665 research outputs found

    California scrub-jays reduce visual cues available to potential pilferers by matching food colour to caching substrate

    Get PDF
    Some animals hide food to consume later, however these caches are susceptible to theft by conspecifics and heterospecifics. Many caching animals use protection strategies to minimise visual and acoustic cues available to potential pilferers, such as caching behind objects, in shaded areas and in quiet substrate. A widespread method of concealment in the animal kingdom is background matching, a camouflage strategy commonly used by prey animals where they match the colour or patterning of the visual background. Caching animals may also use this tactic to minimise the conspicuousness of caches, for example by hiding coloured food in a similar coloured substrate. We tested whether California scrub-jays (Aphelocoma californica) camouflage their food in this way by offering them coloured food to cache in substrates that either matched or did not match the colour of the food. We also determined whether this caching behavior was sensitive to social context by letting birds cache when a bird could be both seen and heard (visual and acoustic cue present), or heard but not seen (acoustic cues only). When caching events could be both heard and seen by a potential pilferer, birds cached randomly in both coloured substrates. However, they preferentially hid food in the substrate that matched the food colour when only acoustic, and not visual cues were present. These results reveal a novel cache protection strategy employed by a caching animal that is also sensitive to social context.L.A.K. received funding from the People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme (FP7/2007-2013) under REA grant agreement PIIF-GA-2012-327423

    Using the Aesop's fable paradigm to investigate causal understanding of water displacement by New Caledonian crows.

    Get PDF
    Understanding causal regularities in the world is a key feature of human cognition. However, the extent to which non-human animals are capable of causal understanding is not well understood. Here, we used the Aesop's fable paradigm--in which subjects drop stones into water to raise the water level and obtain an out of reach reward--to assess New Caledonian crows' causal understanding of water displacement. We found that crows preferentially dropped stones into a water-filled tube instead of a sand-filled tube; they dropped sinking objects rather than floating objects; solid objects rather than hollow objects, and they dropped objects into a tube with a high water level rather than a low one. However, they failed two more challenging tasks which required them to attend to the width of the tube, and to counter-intuitive causal cues in a U-shaped apparatus. Our results indicate that New Caledonian crows possess a sophisticated, but incomplete, understanding of the causal properties of displacement, rivalling that of 5-7 year old children

    Decision-making flexibility in New Caledonian crows, young children and adult humans in a multi-dimensional tool-use task.

    Get PDF
    The ability to make profitable decisions in natural foraging contexts may be influenced by an additional requirement of tool-use, due to increased levels of relational complexity and additional work-effort imposed by tool-use, compared with simply choosing between an immediate and delayed food item. We examined the flexibility for making the most profitable decisions in a multi-dimensional tool-use task, involving different apparatuses, tools and rewards of varying quality, in 3-5-year-old children, adult humans and tool-making New Caledonian crows (Corvus moneduloides). We also compared our results to previous studies on habitually tool-making orangutans (Pongo abelii) and non-tool-making Goffin's cockatoos (Cacatua goffiniana). Adult humans, cockatoos and crows, but not children and orangutans, did not select a tool when it was not necessary, which was the more profitable choice in this situation. Adult humans, orangutans and cockatoos, but not crows and children, were able to refrain from selecting non-functional tools. By contrast, the birds, but not the primates tested, struggled to attend to multiple variables-where two apparatuses, two tools and two reward qualities were presented simultaneously-without extended experience. These findings indicate: (1) in a similar manner to humans and orangutans, New Caledonian crows and Goffin's cockatoos can flexibly make profitable decisions in some decision-making tool-use tasks, though the birds may struggle when tasks become more complex; (2) children and orangutans may have a bias to use tools in situations where adults and other tool-making species do not

    Speech-language pathology services in Australian and New Zealand pediatric burn units and chemical ingestion injury

    Get PDF
    To date, little is known regarding the extent and nature of involvement of speech-language pathology (SLP) services within pediatric burn settings. The aim of this clinical service study was to investigate the role of SLP services within burn teams across Australia and New Zealand. Eleven pediatric burn units were identified as members of the Australian and New Zealand Burn Association Bi National Burns Registry. Representatives from both burn units and SLP departments at each setting were sent a link to a purpose-built online questionnaire. Seven responses from eight centers were received, with paired responses (burn units and SLP departments) being obtained from six centers. Pediatric burn units and SLP departments were found to differ in perceptions of SLP involvement in burn care. No burn units reported utilization of a protocol for referral to SLP. Dysphagia, followed by orofacial contracture management was the most frequently reported areas of SLP involvement, and multidisciplinary contribution within these areas was recognized. A majority (71%) of SLP departments reported involvement with chemical ingestion injury; however, referral rates were low. This study confirms that SLP services are utilized within Australian and New Zealand pediatric burn units, and SLPs are involved with pediatric patients with chemical ingestion injuries. However, potential exists for increased SLP input. There is also evident needed for established guidelines surrounding referrals and greater education regarding the role of SLPs within pediatric burn care

    Self‐control in crows, parrots and nonhuman primates

    Get PDF
    Self‐control is critical for both humans and nonhuman animals because it underlies complex cognitive abilities, such as decision‐making and future planning, enabling goal‐directed behavior. For instance, it is positively associated with social competence and life success measures in humans. We present the first review of delay of gratification as a measure of self‐control in nonhuman primates, corvids (crow family) and psittacines (parrot order): disparate groups that show comparable advanced cognitive abilities and similar socio‐ecological factors. We compare delay of gratification performance and identify key issues and outstanding areas for future research, including finding the best measures and drivers of delayed gratification. Our review therefore contributes to our understanding of both delayed gratification as a measure of self‐control and of complex cognition in animals

    Pre--Main-Sequence stellar populations across Shapley Constellation III. I. Photometric Analysis and Identification

    Full text link
    We present our investigation of pre--main-sequence (PMS) stellar populations in the Large Magellanic Cloud (LMC) from imaging with Hubble Space Telescope WFPC2 camera. Our targets of interest are four star-forming regions located at the periphery of the super-giant shell LMC 4 (Shapley Constellation III). The PMS stellar content of the regions is revealed through the differential Hess diagrams and the observed color-magnitude diagrams (CMDs). Further statistical analysis of stellar distributions along cross-sections of the faint part of the CMDs allowed the quantitative assessment of the PMS stars census, and the isolation of faint PMS stars as the true low-mass stellar members of the regions. These distributions are found to be well represented by a double Gaussian function, the first component of which represents the main-sequence field stars and the second the native PMS stars of each region. Based on this result, a cluster membership probability was assigned to each PMS star according to its CMD position. The higher extinction in the region LH 88 did not allow the unambiguous identification of its native stellar population. The CMD distributions of the PMS stars with the highest membership probability in the regions LH 60, LH 63 and LH 72 exhibit an extraordinary similarity among the regions, suggesting that these stars share common characteristics, as well as common recent star formation history. Considering that the regions are located at different areas of the edge of LMC 4, this finding suggests that star formation along the super-giant shell may have occurred almost simultaneously.Comment: Accepted for publication in the Astrophysical Journal. 19 pages, 19 figures (three omitted due to size limitations, without affecting the comprehension of the manuscript

    Highly conserved gene order and numerous novel repetitive elements in genomic regions linked to wing pattern variation in Heliconius butterflies

    Get PDF
    Background: With over 20 parapatric races differing in their warningly colored wing patterns, the butterfly Heliconius erato provides a fascinating example of an adaptive radiation. Together with matching races of its co-mimic Heliconius melpomene, H. erato also represents a textbook case of Müllerian mimicry, a phenomenon where common warning signals are shared amongst noxious organisms. It is of great interest to identify the specific genes that control the mimetic wing patterns of H. erato and H. melpomene. To this end we have undertaken comparative mapping and targeted genomic sequencing in both species. This paper reports on a comparative analysis of genomic sequences linked to color pattern mimicry genes in Heliconius. Results: Scoring AFLP polymorphisms in H. erato broods allowed us to survey loci at approximately 362 kb intervals across the genome. With this strategy we were able to identify markers tightly linked to two color pattern genes: D and Cr, which were then used to screen H. erato BAC libraries in order to identify clones for sequencing. Gene density across 600 kb of BAC sequences appeared relatively low, although the number of predicted open reading frames was typical for an insect. We focused analyses on the D- and Cr-linked H. erato BAC sequences and on the Yb-linked H. melpomene BAC sequence. A comparative analysis between homologous regions of H. erato (Cr-linked BAC) and H. melpomene (Yb-linked BAC) revealed high levels of sequence conservation and microsynteny between the two species. We found that repeated elements constitute 26% and 20% of BAC sequences from H. erato and H. melpomene respectively. The majority of these repetitive sequences appear to be novel, as they showed no significant similarity to any other available insect sequences. We also observed signs of fine scale conservation of gene order between Heliconius and the moth Bombyx mori, suggesting that lepidopteran genome architecture may be conserved over very long evolutionary time scales. Conclusion: Here we have demonstrated the tractability of progressing from a genetic linkage map to genomic sequence data in Heliconius butterflies. We have also shown that fine-scale gene order is highly conserved between distantly related Heliconius species, and also between Heliconius and B. mori. Together, these findings suggest that genome structure in macrolepidoptera might be very conserved, and show that mapping and positional cloning efforts in different lepidopteran species can be reciprocally informative

    From Antenna to Antenna: Lateral Shift of Olfactory Memory Recall by Honeybees

    Get PDF
    Honeybees, Apis mellifera, readily learn to associate odours with sugar rewards and we show here that recall of the olfactory memory, as demonstrated by the bee extending its proboscis when presented with the trained odour, involves first the right and then the left antenna. At 1–2 hour after training using both antennae, recall is possible mainly when the bee uses its right antenna but by 6 hours after training a lateral shift has occurred and the memory can now be recalled mainly when the left antenna is in use. Long-term memory one day after training is also accessed mainly via the left antenna. This time-dependent shift from right to left antenna is also seen as side biases in responding to odour presented to the bee's left or right side. Hence, not only are the cellular events of memory formation similar in bees and vertebrate species but also the lateralized networks involved may be similar. These findings therefore seem to call for remarkable parallel evolution and suggest that the proper functioning of memory formation in a bilateral animal, either vertebrate or invertebrate, requires lateralization of processing

    Performance in Object-Choice Aesop's Fable Tasks Are Influenced by Object Biases in New Caledonian Crows but not in Human Children

    Get PDF
    The ability to reason about causality underlies key aspects of human cognition, but the extent to which non-humans understand causality is still largely unknown. The Aesop's Fable paradigm, where objects are inserted into water-filled tubes to obtain out-of-reach rewards, has been used to test casual reasoning in birds and children. However, success on these tasks may be influenced by other factors, specifically, object preferences present prior to testing or arising during pre-test stone-dropping training. Here, we assessed this 'object-bias' hypothesis by giving New Caledonian crows and 5-10 year old children two object-choice Aesop's Fable experiments: sinking vs. floating objects, and solid vs. hollow objects. Before each test, we assessed subjects' object preferences and/or trained them to prefer the alternative object. Both crows and children showed pre-test object preferences, suggesting that birds in previous Aesop's Fable studies may also have had initial preferences for objects that proved to be functional on test. After training to prefer the non-functional object, crows, but not children, performed more poorly on these two object-choice Aesop's Fable tasks than subjects in previous studies. Crows dropped the non-functional objects into the tube on their first trials, indicating that, unlike many children, they do not appear to have an a priori understanding of water displacement. Alternatively, issues with inhibition could explain their performance. The crows did, however, learn to solve the tasks over time. We tested crows further to determine whether their eventual success was based on learning about the functional properties of the objects, or associating dropping the functional object with reward. Crows inserted significantly more rewarded, non-functional objects than non-rewarded, functional objects. These findings suggest that the ability of New Caledonian crows to produce performances rivaling those of young children on object-choice Aesop's Fable tasks is partly due to pre-existing object preferences.This research was funded by the European Research Council under the European Union's Seventh Framewor k Programme (FP7/ 2007-2013)/ERC Grant Agreement No. 3399933, awarded to NSC (funding RM, SAJ, EL & NSC). AHT was funded by a Rutherford Discovery Fellowship from the Royal Society of New Zealand
    corecore