70 research outputs found

    Ultrasonic characterization of ultrasound contrast agents

    Get PDF
    The main constituent of an ultrasound contrast agent (UCA) is gas-filled microbubbles. An average UCA contains billions per ml. These microbubbles are excellent ultrasound scatterers due to their high compressibility. In an ultrasound field they act as resonant systems, resulting in harmonic energy in the backscattered ultrasound signal, such as energy at the subharmonic, ultraharmonic and higher harmonic frequencies. This harmonic energy is exploited for contrast enhanced imaging to discriminate the contrast agent from surrounding tissue. The amount of harmonic energy that the contrast agent bubbles generate depends on the bubble characteristics in combination with the ultrasound field applied. This paper summarizes different strategies to characterize the UCAs. These strategies can be divided into acoustic and optical methods, which focus on the linear or nonlinear responses of the contrast agent bubbles. In addition, the characteristics of individual bubbles can be determined or the bubbles can be examined when they are part of a population. Recently, especially optical methods have proven their value to study individual bubbles. This paper concludes by showing some examples of optically observed typical behavior of contrast bubbles in ultrasound fields

    Haemolysis during Sample Preparation Alters microRNA Content of Plasma

    Get PDF
    The presence of cell-free microRNAs (miRNAs) has been detected in a range of body fluids. The miRNA content of plasma/serum in particular has been proposed as a potential source of novel biomarkers for a number of diseases. Nevertheless, the quantification of miRNAs from plasma or serum is made difficult due to inefficient isolation and lack of consensus regarding the optimal reference miRNA. The effect of haemolysis on the quantification and normalisation of miRNAs in plasma has not been investigated in great detail. We found that levels of miR-16, a commonly used reference gene, showed little variation when measured in plasma samples from healthy volunteers or patients with malignant mesothelioma or coronary artery disease. Including samples with evidence of haemolysis led to variation in miR-16 levels and consequently decreased its ability to serve as a reference. The levels of miR-16 and miR-451, both present in significant levels in red blood cells, were proportional to the degree of haemolysis. Measurements of the level of these miRNAs in whole blood, plasma, red blood cells and peripheral blood mononuclear cells revealed that the miRNA content of red blood cells represents the major source of variation in miR-16 and miR-451 levels measured in plasma. Adding lysed red blood cells to non-haemolysed plasma allowed a cut-off level of free haemoglobin to be determined, below which miR-16 and miR-451 levels displayed little variation between individuals. In conclusion, increases in plasma miR-16 and miR-451 are caused by haemolysis. In the absence of haemolysis the levels of both miR-16 and miR-451 are sufficiently constant to serve as normalisers

    The Effect of Tuberculosis on Mortality in HIV Positive People: A Meta-Analysis

    Get PDF
    Tuberculosis is a leading cause of death in people living with HIV (PLWH). We conducted a meta analysis to assess the effect of tuberculosis on mortality in people living with HIV. Meta-analysis of cohort studies assessing the effect of tuberculosis on mortality in PLWH. To identify eligible studies we systematically searched electronic databases (until December 2008), performed manual searches of citations from relevant articles, and reviewed conference proceedings. Multivariate hazard ratios (HR) of mortality in PLWH with and without tuberculosis, estimated in individual cohort studies, were pooled using random effect weighting according to "Der Simonian Laird method" if the p-value of the heterogeneity test was <0.05. Fifteen cohort studies were systematically retrieved. Pooled overall analysis of these 15 studies estimating the effect of tuberculosis on mortality in PLWH showed a Hazard Ratio (HR) of 1.8 (95% confidence interval (CI): 1.4-2.3). Subanalysis of 8 studies in which the cohort was not exposed to highly active antiretroviral therapy (HAART) showed an HR of 2.6 (95% CI: 1.8-3.6). Subanalysis of 6 studies showed that tuberculosis did not show an effect on mortality in PLWH exposed to HAART: HR 1.1 (95% CI: 0.9-1.3). These results provide an indication of the magnitude of benefit to an individual that could have been expected if tuberculosis had been prevented. It emphasizes the need for additional studies assessing the effect of preventing tuberculosis or early diagnosis and treatment of tuberculosis in PLWH on reducing mortality. Furthermore, the results of the subgroup analyses in cohorts largely exposed to HAART provide additional support to WHO's revised guidelines, which include promoting the initiation of HAART for PLWH co-infected with tuberculosis. The causal effect of tuberculosis on mortality in PLWH exposed to HAART needs to be further evaluated once the results of more cohort studies become availabl

    Requirements for Receptor Engagement during Infection by Adenovirus Complexed with Blood Coagulation Factor X

    Get PDF
    Human adenoviruses from multiple species bind to coagulation factor X (FX), yet the importance of this interaction in adenovirus dissemination is unknown. Upon contact with blood, vectors based on adenovirus serotype 5 (Ad5) binds to FX via the hexon protein with nanomolar affinity, leading to selective uptake of the complex into the liver and spleen. The Ad5:FX complex putatively targets heparan sulfate proteoglycans (HSPGs). The aim of this study was to elucidate the specific requirements for Ad5:FX-mediated cellular uptake in this high-affinity pathway, specifically the HSPG receptor requirements as well as the role of penton base-mediated integrin engagement in subsequent internalisation. Removal of HS sidechains by enzymatic digestion or competition with highly-sulfated heparins/heparan sulfates significantly decreased FX-mediated Ad5 cell binding in vitro and ex vivo. Removal of N-linked and, in particular, O-linked sulfate groups significantly attenuated the inhibitory capabilities of heparin, while the chemical inhibition of endogenous HSPG sulfation dose-dependently reduced FX-mediated Ad5 cellular uptake. Unlike native heparin, modified heparins lacking O- or N-linked sulfate groups were unable to inhibit Ad5 accumulation in the liver 1h after intravascular administration of adenovirus. Similar results were observed in vitro using Ad5 vectors possessing mutations ablating CAR- and/or αv integrin binding, demonstrating that attachment of the Ad5:FX complex to the cell surface involves HSPG sulfation. Interestingly, Ad5 vectors ablated for αv integrin binding showed markedly delayed cell entry, highlighting the need for an efficient post-attachment internalisation signal for optimal Ad5 uptake and transport following surface binding mediated through FX. This study therefore integrates the established model of αv integrin-dependent adenoviral infection with the high-affinity FX-mediated pathway. This has important implications for mechanisms that define organ targeting following contact of human adenoviruses with blood

    Anti-angiogenic therapy for cancer: Current progress, unresolved questions and future directions

    Get PDF
    Tumours require a vascular supply to grow and can achieve this via the expression of pro-angiogenic growth factors, including members of the vascular endothelial growth factor (VEGF) family of ligands. Since one or more of the VEGF ligand family is overexpressed in most solid cancers, there was great optimism that inhibition of the VEGF pathway would represent an effective anti-angiogenic therapy for most tumour types. Encouragingly, VEGF pathway targeted drugs such as bevacizumab, sunitinib and aflibercept have shown activity in certain settings. However, inhibition of VEGF signalling is not effective in all cancers, prompting the need to further understand how the vasculature can be effectively targeted in tumours. Here we present a succinct review of the progress with VEGF-targeted therapy and the unresolved questions that exist in the field: including its use in different disease stages (metastatic, adjuvant, neoadjuvant), interactions with chemotherapy, duration and scheduling of therapy, potential predictive biomarkers and proposed mechanisms of resistance, including paradoxical effects such as enhanced tumour aggressiveness. In terms of future directions, we discuss the need to delineate further the complexities of tumour vascularisation if we are to develop more effective and personalised anti-angiogenic therapies. © 2014 The Author(s)

    The Wnt-dependent signaling pathways as target in oncology drug discovery

    Get PDF
    Our current understanding of the Wnt-dependent signaling pathways is mainly based on studies performed in a number of model organisms including, Xenopus, Drosophila melanogaster, Caenorhabditis elegans and mammals. These studies clearly indicate that the Wnt-dependent signaling pathways are conserved through evolution and control many events during embryonic development. Wnt pathways have been shown to regulate cell proliferation, morphology, motility as well as cell fate. The increasing interest of the scientific community, over the last decade, in the Wnt-dependent signaling pathways is supported by the documented importance of these pathways in a broad range of physiological conditions and disease states. For instance, it has been shown that inappropriate regulation and activation of these pathways is associated with several pathological disorders including cancer, retinopathy, tetra-amelia and bone and cartilage disease such as arthritis. In addition, several components of the Wnt-dependent signaling pathways appear to play important roles in diseases such as Alzheimer’s disease, schizophrenia, bipolar disorder and in the emerging field of stem cell research. In this review, we wish to present a focused overview of the function of the Wnt-dependent signaling pathways and their role in oncogenesis and cancer development. We also want to provide information on a selection of potential drug targets within these pathways for oncology drug discovery, and summarize current data on approaches, including the development of small-molecule inhibitors, that have shown relevant effects on the Wnt-dependent signaling pathways

    QCD and strongly coupled gauge theories : challenges and perspectives

    Get PDF
    We highlight the progress, current status, and open challenges of QCD-driven physics, in theory and in experiment. We discuss how the strong interaction is intimately connected to a broad sweep of physical problems, in settings ranging from astrophysics and cosmology to strongly coupled, complex systems in particle and condensed-matter physics, as well as to searches for physics beyond the Standard Model. We also discuss how success in describing the strong interaction impacts other fields, and, in turn, how such subjects can impact studies of the strong interaction. In the course of the work we offer a perspective on the many research streams which flow into and out of QCD, as well as a vision for future developments.Peer reviewe

    Are oxygen limitations under recognized regulators of organic carbon turnover in upland soils?

    No full text
    Understanding the processes controlling organic matter (OM) stocks in upland soils, and the ability to management them, is crucial for maintaining soil fertility and carbon (C) storage as well as projecting change with time. OM inputs are balanced by the mineralization (oxidation) rate, with the difference determining whether the system is aggrading, degrading or at equilibrium with reference to its C storage. In upland soils, it is well recognized that the rate and extent of OM mineralization is affected by climatic factors (particularly temperature and rainfall) in combination with OM chemistry, mineral–organic associations, and physical protection. Here we examine evidence for the existence of persistent anaerobic microsites in upland soils and their effect on microbially mediated OM mineralization rates. We corroborate long-standing assumptions that residence times of OM tend to be greater in soil domains with limited oxygen supply (aggregates or peds). Moreover, the particularly long residence times of reduced organic compounds (e.g., aliphatics) are consistent with thermodynamic constraints on their oxidation under anaerobic conditions. Incorporating (i) pore length and connectivity governing oxygen diffusion rates (and thus oxygen supply) with (ii) ‘hot spots’ of microbial OM decomposition (and thus oxygen consumption), and (iii) kinetic and thermodynamic constraints on OM metabolism under anaerobic conditions will thus improve conceptual and numerical models of C cycling in upland soils. We conclude that constraints on microbial metabolism induced by oxygen limitations act as a largely unrecognized and greatly underestimated control on overall rates of C oxidation in upland soils
    corecore