256 research outputs found

    A classification of the symmetries of uniform discrete defective crystals

    Get PDF
    Crystals which have a uniform distribution of defects are endowed with a Lie group description which allows one to construct an associated discrete structure. These structures are in fact the discrete subgroups of the ambient Lie group. The geometrical symmetries of these structures can be computed in terms of the changes of generators of the discrete subgroup which preserve the discrete set of points. Here a classification of the symmetries for the discrete subgroups of a particular class of three-dimensional solvable Lie group is presented. It is a fact that there are only three mathematically distinct types of Lie groups which model uniform defective crystals, and the calculations given here complete the discussion of the symmetries of the corresponding discrete structures. We show that those symmetries corresponding to automorphisms of the discrete subgroups extend uniquely to symmetries of the ambient Lie group and we regard these symmetries as (restrictions of) elastic deformations of the continuous defective crystal. Other symmetries of the discrete structures are classified as ‘inelastic’ symmetries

    Insights into oscillator network dynamics using a phase-isostable framework

    Get PDF
    Networks of coupled nonlinear oscillators can display a wide range of emergent behaviors under the variation of the strength of the coupling. Network equations for pairs of coupled oscillators where the dynamics of each node is described by the evolution of its phase and slowest decaying isostable coordinate have previously been shown to capture bifurcations and dynamics of the network, which cannot be explained through standard phase reduction. An alternative framework using isostable coordinates to obtain higher-order phase reductions has also demonstrated a similar descriptive ability for two oscillators. In this work, we consider the phase-isostable network equations for an arbitrary but finite number of identical coupled oscillators, obtaining conditions required for the stability of phase-locked states including synchrony. For the mean-field complex Ginzburg–Landau equation where the solutions of the full system are known, we compare the accuracy of the phase-isostable network equations and higher-order phase reductions in capturing bifurcations of phase-locked states. We find the former to be the more accurate and, therefore, employ this to investigate the dynamics of globally linearly coupled networks of Morris–Lecar neuron models (both two and many nodes). We observe qualitative correspondence between results from numerical simulations of the full system and the phase-isostable description demonstrating that in both small and large networks, the phase-isostable framework is able to capture dynamics that the first-order phase description cannot

    Geometrical structure of two-dimensional crystals with non-constant dislocation density

    Get PDF
    We outline mathematical methods which seem to be necessary in order to discuss crystal structures with non-constant dislocation density tensor(ddt) in some generality. It is known that, if the ddt is constant (in space), then material points can be identified with elements of a certain Lie group, with group operation determined in terms of the ddt - the dimension of the Lie group equals that of the ambient space in which the body resides, in that case. When the ddt is non-constant, there is also a relevant Lie group (given technical assumptions), but the dimension of the group is strictly greater than that of the ambient space. The group acts on the set of material points, and there is a non-trivial isotropy group associated with the group action. We introduce and discuss the requisite mathematical apparatus in the context of Davini's model of defective crystals, and focus on a particular case where the ddt is such that a three dimensional Lie group acts on a two dimensional crystal state - this allows us to construct corresponding discrete structures too

    Group elastic symmetries common to continuum and discrete defective crystals

    Get PDF
    The Lie group structure of crystals which have uniform continuous distributions of dislocations allows one to construct associated discrete structures—these are discrete subgroups of the corresponding Lie group, just as the perfect lattices of crystallography are discrete subgroups of R 3 , with addition as group operation. We consider whether or not the symmetries of these discrete subgroups extend to symmetries of (particular) ambient Lie groups. It turns out that those symmetries which correspond to automorphisms of the discrete structures do extend to (continuous) symmetries of the ambient Lie group (just as the symmetries of a perfect lattice may be embedded in ‘homogeneous elastic’ deformations). Other types of symmetry must be regarded as ‘inelastic’. We show, following Kamber and Tondeur, that the corresponding continuous automorphisms preserve the Cartan torsion, and we characterize the discrete automorphisms by a commutativity condition, (6.14), that relates (via the matrix exponential) to the dislocation density tensor. This shows that periodicity properties of corresponding energy densities are determined by the dislocation density

    A comparison of proximal and distal high-frequency jet ventilation in an experimental animal model

    Full text link
    High-frequency jet ventilation using either a proximal or a distal endotracheal injection site through a triple-lumen endotracheal tube was studied in 10 adult cats. The comparative effects on pulmonary gas exchange, tracheal pressure, heart rate, and blood pressure were examined for each injection site at both high (8–12 pounds per square inch [PSI] and low (5–8 PSI) jet-driving pressures in normal and lung-injured cats. Lung injury was created by modification of a surfactant washout technique previously demonstrated in rabbits. Alveolar ventilation (Paco 2 ) was found to be significantly better with distal than with proximal jet injection under all experimental conditions. At high jet-driving pressures, peak inspiratory pressure was higher in both normal (p = 0.03) and lung-injured cats (p = 0.002) with distal high-frequency jet ventilation. In addition, lung-injured animals were observed to have higher distal mean airway pressures at high jet-driving pressures (p < 0.01). No differences in oxygenation were found in any circumstances. The results of this animal study suggest that distal high-frequency jet ventilation may be more effective in those situations in which improvement in alveolar ventilation is the major goal and that during proximal high-frequency jet ventilation airway pressures should be monitored as far distally as possible.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/38592/1/1950020410_ftp.pd

    Potential Unintended Consequences Due to Medicare’s “No Pay for Errors Rule”? A Randomized Controlled Trial of an Educational Intervention with Internal Medicine Residents

    Get PDF
    Medicare has selected 10 hospital-acquired conditions for which it will not reimburse hospitals unless the condition was documented as “present on admission.” This “no pay for errors” rule may have a profound effect on the clinical practice of physicians. To determine how physicians might change their behavior after learning about the Medicare rule. We conducted a randomized trial of a brief educational intervention embedded in an online survey, using clinical vignettes to estimate behavioral changes. At a university-based internal medicine residency program, 168 internal medicine residents were eligible to participate. Residents were randomized to receive a one-page description of Medicare’s “no pay for errors” rule with pre-vignette reminders (intervention group) or no information (control group). Residents responded to five clinical vignettes in which “no pay for errors” conditions might be present on admission. Primary outcome was selection of the single most clinically appropriate option from three clinical practice choices presented for each clinical vignette. Survey administered from December 2008 to March 2009. There were 119 responses (71%). In four of five vignettes, the intervention group was less likely to select the most clinically appropriate response. This was statistically significant in two of the cases. Most residents were aware of the rule but not its impact and specifics. Residents acknowledged responsibility to know Medicare documentation rules but felt poorly trained to do so. Residents educated about the Medicare’s “no pay for errors” were less likely to select the most clinically appropriate responses to clinical vignettes. Such choices, if implemented in practice, have the potential for causing patient harm through unnecessary tests, procedures, and other interventions

    An investigation of the chemistry of ship emission plumes during ITCT 2002

    Get PDF
    A ship emission plume experiment was conducted about 100 km off the California coast during the NOAA Intercontinental Transport and Chemical Transformation (ITCT) 2K2 airborne field campaign. Measurements of chemical species were made from the NOAA WP-3D aircraft in eight consecutive transects of a ship plume around midday during 2.5 hours of flight. The measured species include NOx, HNO3, peroxyacetylnitrate (PAN), SO2, H2SO4, O3, CO, CO2, nonmethane hydrocarbons (NMHC), and particle number and size distributions. Observations demonstrate a NOx lifetime of ∌1.8 hours inside the ship plume compared to ∌6.5 hours (at noontime) in the moderately polluted background marine boundary layer of the experiment. This confirms the earlier hypothesis of highly enhanced in-plume NOx destruction. Consequently, one would expect the impact of ship emissions is much less severe than those predicted by global models that do not include rapid NOx destruction. Photochemical model calculations suggest that more than 80% of the NOx loss was due to the NO2 + OH reaction; the remainder was by PAN formation. The model underestimated in-plume NOx loss rate by about 30%. In addition, a comparison of measured to predicted H2SO4 in the plumes suggests that the photochemical model predicts OH variability reasonably well but may underestimate actual values. Predictions of in-plume O3 production agree well with the observations, suggesting that model-predicted peroxy radical (HO2 + RO2) levels are reasonable. The model estimated ozone production efficiency ranges from 6 to 30. The largest model bias was seen in the comparison with measured HNO3. The model overestimated in-plume HNO3 by about a factor of 6. This is most likely caused by underestimated HNO3 sinks possibly involving particle scavenging. However, limited data availability precluded a conclusive test of this possible loss process. Copyright 2005 by the American Geophysical Union
    • 

    corecore