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ABSTRACT

Networks of coupled nonlinear oscillators can display a wide range of emergent behaviors under the variation of the strength of the coupling.
Network equations for pairs of coupled oscillators where the dynamics of each node is described by the evolution of its phase and slowest
decaying isostable coordinate have previously been shown to capture bifurcations and dynamics of the network, which cannot be explained
through standard phase reduction. An alternative framework using isostable coordinates to obtain higher-order phase reductions has also
demonstrated a similar descriptive ability for two oscillators. In this work, we consider the phase-isostable network equations for an arbitrary
but finite number of identical coupled oscillators, obtaining conditions required for the stability of phase-locked states including synchrony.
For the mean-field complex Ginzburg–Landau equation where the solutions of the full system are known, we compare the accuracy of the
phase-isostable network equations and higher-order phase reductions in capturing bifurcations of phase-locked states. We find the former to
be the more accurate and, therefore, employ this to investigate the dynamics of globally linearly coupled networks of Morris–Lecar neuron
models (both two and many nodes). We observe qualitative correspondence between results from numerical simulations of the full system
and the phase-isostable description demonstrating that in both small and large networks, the phase-isostable framework is able to capture
dynamics that the first-order phase description cannot.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0179430

The utility of the classical technique of phase reduction for
describing the dynamics of networks of coupled oscillators is lim-
ited by the assumption that the dynamics for each node remain
on the stable limit cycle of the uncoupled system. We here
investigate reduced equations for networks of arbitrary finite
size, where the dynamics of each node is described in terms of
its phase and the slowest decaying isostable coordinate, allow-
ing for representation of trajectories away from (but near) the
limit cycle. Specifically, we consider conditions for the existence
and stability of phase-locked states generalizing existing results
for phase-reduced equations. We show that phase-isostable net-
work equations provide the most accurate qualitative descrip-
tion of dynamics of the mean-field Ginzburg–Landau equation
when compared with alternative frameworks such as higher-order
phase reduction.1,2 We further demonstrate the power of the gen-
eral framework by considering networks of neural oscillators. We
observe phenomena including the emergence of quasiperiodic
behavior that cannot be captured using first-order phase reduc-
tion. The results are shown to be in good qualitative agreement

with the dynamics of the original network through numerical
simulations and bifurcation analysis.

I. INTRODUCTION

Oscillations observed in biological, physical, and chemical sys-
tems are often due to the presence of attracting limit cycles within
the high-dimensional dynamics.3,4 The classical technique of first-
order phase reduction5–10 provides a rigorous way of describing the
dynamics of weakly perturbed oscillators in terms of a single phase
variable using the notion of isochrons that extend the phase vari-
able for a limit-cycle attractor to its basin of attraction.11,12 The
power of this approach has been demonstrated through its ability
to reveal complex dynamics of weakly forced oscillations and emer-
gent behaviors in weakly coupled oscillator networks in a variety of
relevant systems.8,13–16 However, phase reduction assumes that the
dynamics remain close to the unperturbed limit cycle and, there-
fore, requires that interactions are weak and convergence to the limit
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cycle is fast. The ability of phase reduced equations to accurately
portray the dynamics of the full system diminishes and eventually
breaks down with increasing interaction strength.

In recent years, various strategies have been proposed to over-
come the limitations of first-order phase reduction. The most widely
employed approach is to include additional variables in directions
transverse to the limit cycle which allows for a phase-amplitude
description of transient trajectories away from the limit cycle. While
some authors have used moving orthonormal coordinate systems to
define the amplitudes,17,18 there is a growing body of work that uti-
lizes the notion of isostable coordinates.19–21 These coordinates rep-
resent level sets of the slowest decaying eigenmodes of the Koopman
operator20,22 and, in the absence of perturbations, have exponential
decay to zero within the basin of attraction of the limit cycle at rates
given by the Floquet exponents of the linearization of the flow about
the limit cycle. First defined for systems with a stable fixed point,20

isostable coordinates are now a well established concept for the anal-
ysis of perturbed trajectories near periodic orbits23–27 and also for the
control of oscillators (see Ref. 28 for a recent review).

A dimension reduction can be achieved for high-dimensional
systems by assuming that isostable coordinates, which rapidly decay
(associated with negative Floquet exponents of large magnitude) are
always zero.27,29 This results in a phase-amplitude reduced descrip-
tion of single oscillator dynamics in response to perturbations,
which can be taken to arbitrary orders of accuracy in the isostable
coordinates.29–31 In turn, through high-order asymptotic expansion
of interactions in terms of the phase and isostable coordinates,1 it
is possible to build network equations describing the evolution of
phase and isostable coordinates of each node in a coupled oscilla-
tor network. To date, analysis of these network equations has been
relatively limited and mainly restricted to networks with just two
oscillators.1,32–34

Two different but related frameworks for the use of the phase-
isostable network differential equations for the study of oscillator
network dynamics have emerged. The most frequently employed
approach has been to use the isostable dynamics to derive a phase
equation to higher order in the coupling strength. The isostable
dynamics are assumed to be slaved to the phases so that at each
order in the coupling strength, the isostables are described by a lin-
ear ordinary differential equation.1,32,35,36 This gives a higher-order
description of the phase dynamics when the solution is substituted
into the equation for the time evolution of the phase. The higher-
order phase reduced equations for networks of more than two nodes
contain non-pairwise phase interactions (i.e., terms involving the
phases of three or more oscillators, noted in Refs. 32, 35, and 36 but
overlooked in Ref. 1), despite the interactions between the nonlinear
oscillators being pairwise. This is a typical result for higher-order
phase reduced network equations.37 Similar non-pairwise phase
interactions were identified in Ref. 2, where an alternative strat-
egy was used to compute phase reduced equations to second and
third order in the coupling strength for the mean-field complex
Ginzburg–Landau equation relying on the explicit expression for the
isochrons (which can be obtained in this case).

The alternative framework retains both phase and one isostable
coordinate for each node in the coupled oscillator network. One
work to have adopted this approach is that of Ermentrout and
Wilson.33 Similar to Refs. 1 and 32, they consider as an example a

pair of synaptically coupled thalamic neurons. All three works1,32,33

show that their approaches can reveal bifurcations leading to sta-
ble phase-locked states at higher coupling strength as observed in
full system simulations. Coombes et al.34 also use network equations
for the dynamics of phases and isostable coordinates to consider
two linearly coupled planar piecewise-linear caricatures of the Mor-
ris–Lecar neuron model. Accounting for the non-smoothness of the
dynamics using results from Ref. 30, a bifurcation diagram for the
dynamics in the phase-isostable framework under variation of cou-
pling strength reveals restabilization of synchrony, the existence of
stable phase-locked states other than synchrony and antisynchrony
and also stable quasiperiodic states, none of which can be captured
using first-order phase reduction of the dynamics (which predicts
only stable antisynchrony and unstable synchrony for weak cou-
pling). All of the dynamics revealed by the phase-isostable network
analysis are shown to be in qualitative agreement with numerical
simulations of the full system; however, comparison with results
using the more accurate master stability function38 shows that the
phase-isostable approach underestimates the value of the coupling
strength at which synchrony restabilizes.34

Previous work, therefore, indicates that for networks of two
oscillators, both phase-amplitude network equations and higher-
order phase reduction based on phase-amplitude network inter-
actions have the capability to reveal dynamics, which cannot be
explained using standard phase reduction. It remains an open prob-
lem to fully explore the capabilities of both approaches and draw
comparisons between the two in terms of the accuracy with which
they can capture the existence and stability of network states and to
extend analysis of the approaches to larger networks.

In this paper, we go some way to address these challenges.
Following discussion of the necessary background on isostable coor-
dinates in Sec. II, we derive the phase-isostable network differential
equations and also the corresponding higher-order phase-reduced
equations for a network of N identical oscillators in Secs. II and
IV, respectively. Using first-order averaging, we obtain a system of
phase-isostable network differential equations linear in the isostable
coordinates and with six pairwise phase difference interaction func-
tions. These equations are used to determine conditions for the
existence and stability of various phase-locked states in Sec. III. We
are then able in Sec. IV to compare results regarding the location of
stability boundaries for full synchrony and the asynchronous splay
state arising from each reduction method for the mean-field com-
plex Ginzburg–Landau equation, where it is also possible to derive
the exact location of the stability boundaries for the full system.
We observe that retaining the isostable coordinate through using
the phase-isostable network equations gives the greatest accuracy in
approximating the qualitative bifurcation structure.

We, therefore, proceed to use the phase-isostable network
equations to approximate the dynamics of both small and large net-
works of neural oscillators in Sec. V. For a two node network of
linearly coupled Morris–Lecar neurons,39 we compare the bifurca-
tion diagrams for the full model with that for the phase-isostable
network equations. We observe that the phase-isostable description
qualitatively agrees with the full model in capturing bifurcations of
branches of synchronous and antisynchronous solutions in addi-
tion to the existence of stable phase-locked states. This marks a
vast improvement on the descriptive power of the first-order phase
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reduction, which cannot capture any of these phenomena. We also
investigate a larger network of many globally linearly coupled Mor-
ris–Lecar neurons, where we find that as for the full model consid-
ered in Ref. 40, there is an interval in the coupling strength where
synchrony and the uniform incoherent (splay) state are both unsta-
ble. In this interval, we observe stable cluster states in both the full
dynamics and the phase-amplitude reduced equations. Finally, in
Sec. VI, we discuss the limitations of the framework as well as pos-
sible extensions of our work to further refine the accuracy of the
description of the network dynamics. We also highlight other phe-
nomena, which may be revealed in driven phase oscillator dynamics
through using phase-amplitude coordinates.

II. PHASE AND ISOSTABLE COORDINATES AND

REDUCTIONS

We consider the dynamics of N identical pairwise coupled
oscillators,

dxi

dt
= F(xi)+ ε

N∑

j=1

wijG(xi, xj), i = 1, . . .N, (1)

where xi ∈ R
n. The coupling function G : R

n × R
n → R

n describes
the pairwise interactions, which take the same form for each pair of
oscillators. The overall strength of interactions is given by ε while
wij modulates the weight of connectivity from node j to node i,
effectively describing the topology of the oscillator network. The
uncoupled dynamics (for ε = 0) are described by F : R

n → R
n,

where we assume that
dx

dt
= F(x) (2)

has a T-periodic hyperbolic limit cycle, γ , and we denote points
on γ by xγ (t). Let φ : R × R

n → R
n denote the flow induced

by (2) so that φ(t, x0) represents the solution of (2) with ini-
tial condition x(0) = x0. Then, the monodromy matrix M(xγ (t∗))
= ∂φ(T, x)/∂x|x=xγ (t∗) (time–T flow linearized about a point xγ (t∗)
on the orbit) has eigenvalues λm, m = 0, . . . , n − 1 called the Flo-
quet (or characteristic) multipliers and we assume that 1 = λ0

> |λ1| ≥ · · · ≥ |λn−1| so that the limit cycle γ is stable. For simplic-
ity, we further assume that the Floquet multipliers λm are positive,
real, and simple (and see Ref. 30 for discussion on how to proceed
when this is not the case). The non-zero Floquet exponents are then
κm = log(λm)/T, m = 1, . . . , n − 1, which are all real and negative.

A. First-order phase reduction and weakly coupled

phase oscillators

The periodic orbit γ of (2) can be parameterized by a phase
θ ∈ [0, 2π) with an arbitrary point x

γ

0 ∈ γ having θ(x
γ

0 ) = 0 and
θ(φ(t, x

γ

0 )) = ωt, where ω = 2π/T. The notion of phase can be
extended to points x∗ in the basin of attraction of the limit cycle
B(γ ) by defining the asymptotic phase as the unique θ(x∗) ∈
[0, 2π) satisfying

lim
t→∞

∣∣φ(t, x∗)− φ(t + θ(x∗)/ω, x
γ

0 )
∣∣ = 0. (3)

The level sets of θ(x∗) are called isochrons and contain all points
in B(γ ) with the same asymptotic phase.3,4,11,12 The phase of each

uncoupled node trajectory then evolves as dθ/dt = ω both on and
off the limit cycle. Note that we can then use xγ (t) and xγ (θ) to
denote points on cycle where time is parameterized as t = θ/ω. In
terms of phase variables, (1) becomes

dθi

dt
= ∂θi

∂xi

∣∣∣∣
xi

· dxi

dt
= ω + ε

N∑

j=1

wij

∂θi

∂xi

∣∣∣∣
xi

· G(xi, xj), (4)

where ∂θi
∂xi

∣∣∣
xi

is the phase response curve, which quantifies the effects

of a perturbation on the phase of the oscillator. If the coupling is
weak, then the dynamics stay in a neighborhood of the limit cycle
and evaluating on the limit cycle we have to first order in ε,

dθi

dt
= ω + ε

N∑

j=1

wijZ(θi) · G(xγ (θi), x
γ (θj)), (5)

where Z(θ) = ∂θ

∂x

∣∣
xγ (θ)

= ∇xγ (θ)θ is the gradient of the phase vari-

able θ evaluated on the limit cycle and is known as the infinitesimal
phase response curve (iPRC). While Z may be found directly,4,6,10 it
most commonly computed using the adjoint method,6,16,41 whereby
Z is the T-periodic solution of the adjoint equation

dZ(θ)

dt
= −JTZ(θ), (6)

satisfying the normalization condition Z(0) · F(xγ (0)) = ω. Here,
T denotes the transpose and J := DF(xγ (θ)) is the Jacobian of the
vector field F evaluated on cycle.

A further simplification of (5) can be made by transforming the
system to a rotating frame through θi = φi + ωt, where assuming
weak coupling, φi will slowly drift. First order averaging16,41,42 then
gives the phase dynamics back in the original variables as the simpler
to analyze phase difference equations,

dθi

dt
= ω + ε

N∑

j=1

wijH1(θj − θi), (7)

where

H1(χ) = 1

2π

∫ 2π

0

Z(u) · G(xγ (u), xγ (u + χ)) du (8)

is known as the phase interaction function. A solution of the aver-
aged equation (7) is ε-close to a solution of the unaveraged Eq. (5)
for times of O(ε−1). The existence and stability of phase-locked
states in the first-order phase regime can be studied using (7) and
specified in terms of the properties of H1 and the choice of network
structure given by W = (wij).43–47 In Sec. II B, we will show how the
theory of isostables can be used to derive averaged phase-isostable
network equations with six interaction functions Hk, k = 1, . . . , 6,
and, in Sec. III, we investigate the existence and stability of phase-
locked states for larger magnitude interactions in terms of properties
of the Hk and network structure.

Equation (5) gives what we will refer to as the first-order
phase reduction of the network dynamics. For further details on
the phase reduction of oscillator networks, see the recent reviews.8,48

Phase-reduced equations have provided the standard framework for
understanding dynamics of weakly coupled oscillator networks for
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the last four decades and can be extremely instructive. For instance,
the Kuramoto model3 has simply H1(χ) = sin(χ) yet is able to
capture the basic mechanisms underlying synchronization in many
biological,49 chemical,50 and physical51 oscillator networks. However,
the phase reduction (5) is only valid provided the state of each oscil-
lator remains close to its underlying limit cycle. This requires that
interactions are weak (|ε| � 1) and, therefore, (5) cannot be used
to describe network dynamics with interactions of larger magni-
tude, which could potentially lead to oscillators spending significant
time away from the limit cycle. In order to capture transient dynam-
ics away from the limit cycle, we introduce amplitude variables in
directions transverse to the limit cycle.

B. Isostables and phase-isostable reduction of

network equations

In this paper, we use the concept of isostables to define coordi-
nates off limit cycle.10,19–21,26,27,30 Isostables for the uncoupled system
(2) identify initial conditions with the same relaxation rate to the
limit cycle and, therefore, approach the limit cycle together.26 For
each Floquet exponent κm, m = 1, . . . , n − 1, a set of isostables rep-
resenting an amplitude degree of freedom can be defined, and,
therefore, for any point x ∈ B(γ ), we can associate isostable coor-
dinates ψm, m = 1, . . . , n − 1. The isostables can be defined as level
sets of certain eigenfunctions of the Koopman operator20,25,26,52 and
a constructive definition may be given for the slowest decaying
isostable ψ1:27,31 Denote by wT the left eigenvector of M(x

γ

0 ) asso-
ciated with the eigenvalue λ1 = exp(κ1T). The corresponding right
eigenvector is v with ‖v‖ = √

v · v = 1 and wTv = 1. Then,

ψ1(x) = lim
k→∞

(
wT(φ(tk

θ=0, x)− x
γ

0 ) exp(−κ1t
k
θ=0)

)
, (9)

where tk
θ=0 is the time of the kth transversal of the θ = 0 isochron.

The isostable coordinates are amplitudes that satisfy ψ̇m = κmψm in
the absence of coupling or perturbations.

An alternative perspective is taken by the authors of Refs. 19,
23, and 24 who note that for each point x ∈ B(γ ), there is a
coordinate transform given by an analytic map K such that x
= K(θ ,ψ1, . . . ψn−1), and determine the map K using a parameteri-
zation method.

For oscillator i in the coupled network (1), we can now describe
the phase and isostable dynamics by

dθi

dt
= ω + ε

N∑

j=1

wij

∂θi

∂xi

∣∣∣∣
xi

· G(xi, xj), (10a)

d(ψi)m

dt
= κm(ψi)m + ε

N∑

j=1

wij

∂(ψi)m

∂xi

∣∣∣∣
xi

· G(xi, xj), (10b)

m = 1, . . . , n − 1, (10c)

where the gradients ∂θi
∂xi

∣∣∣
xi

and
∂(ψi)m
∂xi

∣∣∣
xi

are the phase and isostable

response curves, respectively, that quantify the effects of a pertur-
bation on the phase and amplitude coordinates of the oscillator.
We now make the simplifying assumption that Floquet multipli-
ers λ2, . . . , λn−1 are all sufficiently close to zero that perturbations

in the directions of isostables (ψi)2, . . . , (ψi)n−1 may be ignored
since dynamics in these directions decay quickly at rates given by
κ2, . . . κn−1, which are correspondingly large and negative. That is,
we consider a single isostable coordinate (ψi)1 := ψi for each oscilla-
tor with corresponding Floquet exponent κ1 := κ . This assumption
is similar to that made in previous work1,27,32 and its validity is
dependent on a separation of scale of the magnitude of λ1 from λm,
m = 2, . . . , n − 1. We have, therefore (for node dynamics of dimen-
sion n > 2), made a reduction in order from Nn equations to 2N
equations for the network dynamics, retaining only the most slowly
decaying isostable dynamics for each oscillator.

Following Refs. 1 and 31, we can take asymptotic expansions of
solutions away from the limit cycle and also the phase and isostable
response curves about the limit cycle to arbitrary order in the O(ε)
isostable coordinate. That is, we can write

x(θ ,ψ) = xγ (θ)+1x(θ ,ψ) = xγ (θ)+
∞∑

k=1

ψkg(k)(θ), (11a)

∂θ

∂x

∣∣∣∣
x

= Z (θ ,ψ) = Z(0)(θ)+
∞∑

k=1

ψkZ(k)(θ), (11b)

∂ψ

∂x

∣∣∣∣
x

= I (θ ,ψ) = I(0)(θ)+
∞∑

k=1

ψkI(k)(θ), (11c)

where g(1)(θ) is the Floquet eigenfunction [right eigenvector of
M(xγ (θ)) associated with eigenvalue eκT] and g(k)(θ), k > 1 are
higher-order analogs. The gradient of the phase and amplitude
coordinates evaluated on the limit cycle at phase θ are the iPRC
Z(0)(θ) and the infinitesimal isostable response curve (iIRC) I(0)(θ),
respectively. The terms Z(k)(θ) and I(k)(θ), k > 0, are higher-order
correction terms to Z(0)(θ) and I(0)(θ). Note that this generalizes
the linear order expansions developed in Refs. 27, 29, and 30. All of
the T-periodic vector functions g(k), Z(k), I(k) can be computed using
appropriately normalized adjoint equations,31

dg(k)

dt
= (J − kκIn)g

(k) + α(k), (12a)

dZ(k)

dt
= −(JT + kκIn)Z

(k) −
n∑

i=1

k−1∑

j=0

eT
i Z(j)b

(k−j)
i , (12b)

dI(k)

dt
= −(JT + (k − 1)κIn)I

(k) −
n∑

i=1

k−1∑

j=0

eT
i I(j)b

(k−j)
i , (12c)

where In is the n × n identity matrix, ei are the unit basis vectors

and α(k) = [α(k)1 · · ·α(k)n ]
T
, and b

(k−j)
i are the vectors defined in (A7)

and (A12), respectively. See Ref. 31 for the derivation of these
equations for all N isostable coordinates and Appendix A for the
derivation of the compact notation (12) when a single isostable coor-
dinate is considered. The appropriate normalizations for (12) are
also given in Appendix A. In general, the solutions of the hierarchy
of Eq. (12) must be computed numerically.1,10
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In order to obtain the network Eq. (10) in terms of phase and
isostable coordinates, we also require the appropriate expansion for
the coupling function G : R

n × R
n → R

n, which can be expressed
to arbitrary order following.1 Here, we will require only the expan-
sion up to and including second-order derivatives of G, and, there-
fore, we may use more convenient notation than that in Ref. 1.

For X = [xT
i , xT

j ]
T ∈ R

2n, we write G(X) = [G1(X) . . .Gn(X)]
T,

where Gq(X) ∈ R. Defining Xγ = [xγ (θi)
T, xγ (θj)

T]
T

and 1X

= [1xT
i ,1xT

j ]
T
, the Taylor expansion of G can be expressed to

second order as

G(Xγ +1X) = G(Xγ )+ DG(Xγ )1X + 1

2



1XTH11X

...
1XTHn1X


+ · · · ,

(13)

where DG is the Jacobian of G with respect to X and Hq is the
Hessian matrix of second-order derivatives of Gq where and all
derivatives are evaluated at Xγ . Since

DG(Xγ ) = [J1 J2] , Hq =
[
H11

q H12
q

H21
q H22

q

]
, (14)

where Jk = ∂G
∂xk

is the Jacobian of G(xi, xj) with respect to its kth

argument and Hkl
q = ∂

∂xT
l

(
∂Gq

∂xk

)
, we can rewrite (13) as

G(xi, xj) = G(xγ (θi), x
γ (θj))+ J11xi + J21xj

+ 1

2



1xT

i H11
1 1xi +1xT

j H22
1 1xj

...
1xT

i H11
n 1xi +1xT

j H22
n 1xj




+ 1

2



1xT

i H12
1 1xj +1xT

j H21
1 1xi

...
1xT

i H12
n 1xj +1xT

j H21
n 1xi


+ · · · . (15)

Using the expansions of 1xi and 1xj from (11a) and collecting
terms up to quadratic order in ψ , we have

G(θi,ψi, θj,ψj) = G(xγ (θi), x
γ (θj))+ ψiJ1g

(1)(θi)

+ ψjJ2g
(1)(θj)+ ψ2

i K1(θi, θj)

+ ψ2
j K2(θi, θj)+ ψiψjL(θi, θj)+ · · · , (16)

where

K1(θi, θj) = J1g
(2)(θi)+ 1

2




g(1)(θi)
TH11

1 g(1)(θi)

...

g(1)(θi)
TH11

n g(1)(θi)


 , (17a)

K2(θi, θj) = J2g
(2)(θj)+ 1

2




g(1)(θj)
TH22

1 g(1)(θj)

...

g(1)(θj)
TH22

n g(1)(θj)


 , (17b)

L(θi, θj) = 1

2




g(1)(θi)
TH12

1 g(1)(θj)+ g(1)(θj)
TH21

1 g(1)(θi)

...

g(1)(θi)
TH12

n g(1)(θj)+ g(1)(θj)
TH21

n g(1)(θi)


 . (17c)

We now have all of the expansions required to express (1) in
terms of phase and isostable coordinates. Including terms up to
O(ε2), the phase-amplitude network equations are

dθi

dt
= ω + ε

N∑

j=1

wij

[
h1(θi, θj)+ ψih2(θi, θj)+ ψjh3(θi, θj)

]
, (18a)

dψi

dt
= κψi + ε

N∑

j=1

wij

[
h4(θi, θj)+ ψih5(θi, θj)+ ψjh6(θi, θj)

]
,

(18b)

where the six interaction functions hk(θj, θj) are given by

h1(θi, θj) = Z(0)(θi) · G(xγ (θi), x
γ (θj)), (19a)

h2(θi, θj) = Z(0)(θi) · J1g
(1)(θi)+ Z(1)(θi) · G(xγ (θi), x

γ (θj)), (19b)

h3(θi, θj) = Z(0)(θi) · J2g
(1)(θj), (19c)

h4(θi, θj) = I(0)(θi) · G(xγ (θi), x
γ (θj)), (19d)

h5(θi, θj) = I(0)(θi) · J1g
(1)(θi)+ I(1)(θi) · G(xγ (θi), x

γ (θj)), (19e)

h6(θi, θj) = I(0)(θi) · J2g
(1)(θj). (19f)

The expansion of the network equations may be computed to higher
order, but note that to O(εm) there are m(m + 1) interaction func-
tions. Here, we explore the capabilities of the O(ε2) expansion (18)
to describe network behaviors and discuss the limitations imposed
by the truncation at this order in Sec. VI. The network equations
(and, therefore, analysis) may be simplified to a phase difference
system by first-order averaging33,42,53 yielding

dθi

dt
= ω + ε

N∑

j=1

wij

[
H1(θj − θi)+ ψiH2(θj − θi)

+ ψjH3(θj − θi)
]
, (20a)

dψi

dt
= κψi + ε

N∑

j=1

wij

[
H4(θj − θi)+ ψiH5(θj − θi)

+ ψjH6(θj − θi)
]
, (20b)

where Hk are the 2π-periodic functions

Hk(χ) = 1

2π

∫ 2π

0

hk(u, u + χ) du. (21)

In the weak coupling limit where the isostable coordinates may be
assumed to be zero, we recover the first-order phase reduced Eq. (7).
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Equation (20) generalizes to networks of arbitrary size and structure
those given in Ref. 33 and contain higher-order terms than those
derived in Ref. 32. Analysis of the existence and stability of phase-
locked states in (20) is investigated next in Sec. III. Note that since
(20) are averaged equations, the solutions of (18) and (20) are ε-close
for times of O(ε−1).

III. PHASE-LOCKED STATES IN PHASE-AMPLITUDE

NETWORK EQUATIONS

Having defined a system of phase-amplitude network Eq. (20),
we now investigate conditions for the existence and stability of cer-
tain phase-locked states within the averaged equations, generalizing
well known results for phase-reduced networks.43–45,47,54

A 1 : 1 phase-locked state in the network of N identical oscil-
lators (20) is defined by θi = φi +�t, where φi are constant phase
lags and � is the collective frequency of the oscillators. We denote
such a state by8 = (φ1, . . . ,φN). In phase-reduced systems, all node
orbits are assumed to coincide with the stable limit cycle, γ of the
node dynamics. By including information about the dynamics off-
cycle through the isostable coordinates ψi, we allow each node to
have a different trajectory in the phase-isostable phase space. That is,
for a solution (θ1, . . . , θN,ψ1, . . . ,ψN) of (20), the projection (θi,ψi)

= (φi +�t,ψi(t)) can be different for each node. Substituting into
the O(ε2) truncated averaged Eq. (20), we have for i = 1, . . . , N,

� = ω + ε

N∑

j=1

wij

[
H1(φj − φi)+ ψi(t)H2(φj − φi)

+ ψj(t)H3(φj − φi)
]
, (22a)

dψi

dt
= κψi(t)+ ε

N∑

j=1

wij

[
H4(φj − φi)

+ ψi(t)H5(φj − φi)+ ψj(t)H6(φj − φi)
]
. (22b)

For a given fixed set of relative phases8 and connectivity W = (wij),
Eqs. (22a) are N linear equations from which we determine thatψi(t)
are constants depending on �. That is, any phase-locked solution
of (20) has node orbits that coincide with an isostable. Note that
this result is particular to the truncation of the network Eq. (20) at
O(ε2) that includes only linear terms in the isostable coordinates and
would not be expected to hold for higher-order truncation.

Denoting the constant isostable coordinatesψi(t) = 9i we find
from (22) that a phase-locked state with relative phases8 exists with
collective frequency� only if

(�− ω)1N = ε(p − PQ−1q), (23)

where 1N is the column vector of 1s, p = (p1, . . . , pN)
T,

q = (q1, . . . , qN)
T with

pi =
N∑

j=1

wijH1(φj − φi), qi =
N∑

j=1

wijH4(φj − φi),

and P and Q are matrices with entries

Pij = −wijH3(φj − φi)− δij

N∑

k=1

wikH2(φk − φi), (24a)

Qij = −wijH6(φj − φi)− δij

(
N∑

k=1

wikH5(φk − φi)+ κ/ε

)
. (24b)

In this case, the constant isostable values for the nodes are given by
9 = (91, . . . ,9N)

T = Q−1q.
We now consider conditions for the stability of a general phase-

locked state8 = (φ1, . . . ,φN) in the O(ε2) truncated phase-isostable
network equation (20). We linearize about the phase-locked solution
by setting

θi(t) = φi +�t +1θi(t), (25)

ψi(t) = 9i +1ψi(t), (26)

where 1θi(t) and 1ψi(t) are perturbations along and transverse to
the periodic orbit 0, respectively. The linearization of (20) gives

d1θi

dt
' ε

N∑

j=1

wij

[
H′

1(φj − φi)(1θj −1θi)

+
(
9iH

′
2(φj − φi)+9jH

′
3(φj − φi)

)
(1θj −1θi)

+1ψiH2(φj − φi)+1ψjH3(φj − φi)
]
, (27a)

d1ψi

dt
' κ1ψi + ε

N∑

j=1

wij

[
H′

4(φj − φi)(1θj −1θi)

+
(
9iH

′
5(φj − φi)+9jH

′
6(φj − φi)

)
(1θj −1θi)

+1ψiH5(φj − φi)+1ψjH6(φj − φi)
]
, (27b)

where H′
k(χ) = dHk/dχ . Therefore, we obtain

d1θi

dt
=

N∑

j=1

[
H (1)

ij (8)1θj + H (2)
ij (8)1ψj

]
, (28a)

d1ψi

dt
=

N∑

j=1

[
H (3)

ij (8)1θj + H (4)
ij (8)1ψj

]
, (28b)

and, hence, the Jacobian is the 2N × 2N block matrix,

J =
[

H (1)(8) H (2)(8)

H (3)(8) H (4)(8)

]
, (29)

where the N × N matrices H (q)(8) are given in Appendix B. The
phase-locked state8 is stable if the eigenvalues of J all have a neg-
ative real part with the exception of the eigenvalue, which is forced
to be zero corresponding to perturbations along the periodic orbit.
In general, the H (q) are not in graph-Laplacian form as they are for
the phase-only case47,54 and, therefore, the eigenvalues of J cannot
be related directly to the eigenvalues of W = (wij). Nonetheless, we
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may still derive conditions required for the existence and stability of
particular phase-locked solutions.

A. Phase-locked states with a common orbit

We first consider phase-locked states where all oscillators
have a common orbit with isostable coordinate 9i = 9 for all
i = 1, . . . , N. Such states include full synchrony (φi = 0 for all i),
the splay (or uniform incoherent) state (φi = 2π i/N), and balanced
clusters, where the N = Mq nodes lie in M clusters, each contain-
ing q nodes and phase difference between the clusters is 2π/M. In
Sec. III B, we consider unbalanced two-cluster states, where each
cluster is a different size and has a different orbit.

1. Full synchrony

Synchrony is the most widely studied example of a 1:1 phase-
locked state. We extend established results regarding the stability of
synchrony in weakly coupled (phase-reduced) networks by using
the phase-isostable network equation (20). Here, all nodes share
a common phase θ1(t) = . . . = θN(t) with θ̇i = � and orbit with
isostable coordinate 9 . Without loss of generality, let φi = 0. Then,
from (22),

� = ω + ε

N∑

j=1

wij [H1(0)+9 (H2(0)+ H3(0))] , (30a)

0 = κ9 + ε

N∑

j=1

wij [H4(0)+9 (H5(0)+ H6(0))] (30b)

for all i = 1, . . . , N. Denoting the row sum
∑N

j=1 wij = ci, we find

that

9 = − εciH4(0)

κ + εci(H5(0)+ H6(0))
, (31)

� =ω + εciH1(0)− ε2c2
i

H4(0)(H2(0)+ H3(0))

κ + εci(H5(0)+ H6(0))
. (32)

The values of � and 9 must be identical for all i to guarantee the
existence of the synchronous state. There are two ways this may be
achieved.

a. If the row sums ci are independent of i (i.e., ci ≡ c for all i). This
is the case for global coupling where wij = 1/N which we will
consider further later.

b. If H1(0) = 0 and H4(0) = 0.

We consider the conditions required for linear stability in both
cases.

a. Connectivity matrix with constant row sums. Taking ci

= c for all i, (B1a)–(B1d) give the Jacobian for the synchronous

state as

J = −ε
[
(H′

1(0)+9(H′
2(0)+ H′

3(0)) H3(0)
(H′

4(0)+9(H′
5(0)+ H′

6(0)) H6(0)

]
⊗ L

+
[
0 εc(H2(0)+ H3(0))
0 κ + εc(H5(0)+ H6(0))

]
⊗ IN, (33)

where L is the graph-Laplacian matrix with Lij = −wij

+ δij

∑N
k=1 wik, IN is the N × N identity matrix, and ⊗ is the Kro-

necker (tensor) product. The eigenvalues of (33) depend on the
particular choice of W with constant row sums. In the case of global
coupling, where wij = 1/N so that c = 1, we see that J has non-
zero eigenvalues κ + ε(H5(0)+ H6(0)) and µ± each of multiplicity
N − 1, where µ± are the eigenvalues of

M (9) =
[
−ε(H′

1(0)+9(H′
2(0)+ H′

3(0)) εH2(0)
−ε(H′

4(0)+9(H′
5(0)+ H′

6(0)) κ + εH5(0)

]
. (34)

Therefore, synchrony is stable when κ + ε(H5(0)+ H6(0))
< 0, Trace(M (9)) < 0 and det(M (9)) > 0. Reducing back to
the phase-only description by taking H2, . . . , H6 ≡ 0, we recover
the result for phase oscillators that synchrony is stable if −εH′

1(0)
< 0.43,47,54

b. Interaction functions with H1(0) = 0 and H4(0) = 0. If
H1(0) = 0 and H4(0) = 0 then 9 = 0 and, therefore, the syn-
chronous orbit coincides with the stable uncoupled node orbit and
� = ω. The Jacobian is given by

J = −ε
[
H′

1(0) H3(0)
H′

4(0) H6(0)

]
⊗ L +

[
0 0
0 κ

]
⊗ IN

+
[
0 ε(H2(0)+ H3(0))
0 ε(H5(0)+ H6(0))

]
⊗ Diag(c1, . . . , cN). (35)

For the case of diffusive coupling, which is linear in xj − xi,
H1(0) = H4(0) and additionally, since J1 = −J2, H2(0) = −H3(0)
and H5(0) = −H6(0). This gives

J = −ε
[
H′

1(0) H3(0)
H′

4(0) H6(0)

]
⊗ L +

[
0 0
0 κ

]
⊗ IN. (36)

However, there are no general results concerning the eigenvalues of
J . In the case where coupling is global so that Lij = −1/N + δij,
the non-zero eigenvalues of J are κ and µ± each of multiplic-
ity N − 1, where µ± are the eigenvalues of M (0) in (34) so that
synchrony is stable for global diffusive coupling when κ + εH5(0)
− εH′

1(0) < 0 and −εH′
1(0)(κ + εH5(0))+ ε2H2(0)H

′
4(0) > 0.

2. The splay state

Another important example of a 1:1 phase-locked solution is
the splay state, sometimes referred to as a rotating wave or the
uniform incoherent state (UIS). Here, the phases are uniformly
distributed around the unit circle and without loss of generality
we take θi+1 − θi = 2π/N and8 = (φ1, . . . ,φN) where φi = 2π i/N.
The equations for the collective frequency � and collective orbit 9 ,
given by (22) must be satisfied for all values of i for the existence of
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the splay state. In the case of global coupling, wij = 1/N, we find that
the splay state exists with

� = ω + ε

N
(β1 +9(β2 + β3)) , 9 = − εβ4

Nκ + ε(β5 + β6)
,

(37)

where βk =
∑N

j=1 Hk(φj). Considering now the stability of the state,

we see that the Jacobian takes the form (29), where

H
(p)

ij (8) = ε

N

(
A
(p)
j−i − δijB

(p)
)

, p = 1, 2, 3, 4 (38)

for

A(1)
m = H′

1(φm)+9
(
H′

2(φm)+ H′
3(φm)

)
, (39a)

B(1) = β ′
1 +9

(
β ′

2 + β ′
3

)
, (39b)

A(2)
m = H3(φm), (39c)

B(2) = −β2, (39d)

A(3)
m = H′

4(φm)+9
(
H′

5(φm)+ H′
6(φm)

)
, (39e)

B(3) = β ′
4 +9

(
β ′

5 + β ′
6

)
, (39f)

A(4)
m = H6(φm), (39g)

B(4) = −β5 − Nκ/ε, (39h)

and β ′
k =

∑N
j=1 H′

k(φj), where φm = 2πm/N. Therefore, the eigen-

values of H (p) are

λ(p)q = ε

N

(
ν(p)q − B(p)

)
, q = 0, 1, . . . , N − 1, (40)

where ν
(p)
q are the eigenvalues of the circulant matrix A(p) with

elements A
(p)
ij = A

(p)
j−i. Since the A(p) are circulant, the eigenvalues are

ν(p)q =
N∑

m=1

A(p)
m exp(2π imq/N), (41)

and, hence,

λ(1)q = ε

N

N∑

m=1

[
H′

1(φm)+9
(
H′

2(φm)+ H′
3(φm)

)]

×
(
exp(2π imq/N)− 1

)
, (42a)

λ(2)q = ε

N

N∑

m=1

[
H3(φm) exp(2π imq/N)+ H2(φm)

]
, (42b)

λ(3)q = ε

N

N∑

m=1

[
H′

4(φm)+9
(
H′

5(φm)+ H′
6(φm)

)]

×
(
exp(2π imq/N)− 1

)
, (42c)

λ(4)q = ε

N

N∑

m=1

[
H6(φm) exp(2π imq/N)+ H5(φm)

]
+ κ . (42d)

Having found the eigenvalues of each of the blocks H (p), it remains
to determine the eigenvalues µ of the Jacobian (29). Since each
block H (p) is circulant, they can each be diagonalized as H (p)

= Q3(p)Q−1 where3(p) = Diag(λ
(p)
0 , . . . , λ

(p)
N−1), and, therefore, they

commute. By Theorem 1 of Ref. 55, the eigenvalues µ then satisfy

0 = |J − µI2N|

=
∣∣(H (1) − µIN)(H

(4) − µIN)− H (2)H (3)
∣∣

= |Q|
∣∣(3(1) − µIN)(3

(4) − µIN)−3(2)3(3)
∣∣ |Q−1|

=
∣∣(3(1) − µIN)(3

(4) − µIN)−3(2)3(3)
∣∣ . (43)

The characteristic equation for the 2N eigenvalues of J is, there-
fore,

N−1∏

q=0

[
(λ(1)q − µ)(λ(4)q − µ)− λ(2)q λ

(3)
q

]
= 0. (44)

Hence, the eigenvalues are µ±
q for q = 0, . . . , N − 1, where µ±

q are

the eigenvalues of

3q =
[
λ(1)q λ(2)q

λ(3)q λ(4)q

]
. (45)

The splay state is stable if Re(µ±
q ) < 0 for all q = 0, . . . , N − 1 with

the exception of the zero eigenvalue corresponding to perturbations
around the limit cycle.

a. The splay state in the large N limit. In the thermodynamic
limit N → ∞ for global coupling, wij = 1/N, the network aver-
ages are effectively Riemann sums and so may be replaced by time
averages,

lim
N→∞

1

N

N∑

j=1

Hk(2π j/N) = 1

2π

∫ 2π

0

Hk(t) dt := (Hk)0, (46)

where Hk has a Fourier series representation Hk(t) =
∑

n (Hk)n exp

(int) with (Hk)n = 1
2π

∫ 2π

0
Hk(t) exp(−int)dt. Consequently, � and

9 from (37) become

� = ω + ε ((H1)0 +9((H2)0 + (H3)0)) , (47a)

9 = − ε(H4)0

κ + ε((H5)0 + (H6)0)
, (47b)

and

λ(1)q = −εiq
(
(H1)−q +9

(
(H2)−q + (H3)−q

))
, (48a)

λ(2)q = ε
(
(H3)−q + (H2)0

)
, (48b)

λ(3)q = −εiq
(
(H4)−q +9

(
(H5)−q + (H6)−q

))
, (48c)

λ(4)q = κ + ε
(
(H6)−q + (H5)0

)
. (48d)

The eigenvalues of the Jacobian J for the splay state in the large N

limit are given by the eigenvalues of (45) with λ
(p)
q , p = 1, 2, 3, 4 now
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given by (48). The splay state is stable if Re(µ±
q ) < 0 for all non-zero

q. It is straightforward to show that reducing back to phase-only by
letting 9 = 0 and taking |ε| � |κ|, we recover the result that for
globally coupled phase oscillators in the thermodynamic limit, the
splay state is stable if εqIm((H1)−q) < 0 for all non-zero q.43,45,47,54

3. Balanced cluster states in globally coupled

networks

Consider now the more general states sharing a com-
mon orbit in a globally coupled network, wij = 1/N, where the
N = Mm nodes form M clusters, each with m nodes. Symmetry
imposes that the phase difference between any of the M clus-
ters is an integer multiple of 2π/M and without loss of general-
ity we order the nodes such that 8 = 2π(1, . . . , 1, 2, . . . , 2, . . . , M
− 1, . . . , M − 1, M, . . . , M)/M, where each distinct integer value
occurs m times. From (23), we find that the collective frequency and
isostable coordinate of the collective orbit are

� = ω + ε

M
(σ1 +9(σ2 + σ3)) , 9 = − εσ4

Mκ + ε(σ5 + σ6)
,

(49)
where σk =

∑M
j=1 Hk(2π j/M). Considering stability of such a state,

the Jacobian is given by (29), where each block H (p)(8) has block
circulant structure,

H (p)(8) = ε

×




b
(p)
0 1m − a(p)Im b

(p)
1 1m · · · b

(p)
M−11m

b
(p)
M−11m b

(p)
0 1m − a(p)Im · · · b

(p)
M−21m

...
...

. . .
...

b
(p)
1 1m b

(p)
2 1m · · · b

(p)
0 1m − a(p)Im




,

(50)

where 1m denotes the m × m matrix of ones and

a(1) = 1

M
(σ ′

1 +9(σ ′
2 + σ ′

3)), (51a)

a(2) = − 1

M
σ2, (51b)

a(3) = 1

M
(σ ′

4 +9(σ ′
5 + σ ′

6)), (51c)

a(4) = − 1

M
σ5 − κ/ε, (51d)

b(1)i = 1

N

(
H′

1(2π i/M)+9(H′
2(2π i/M)+ H′

3(2π i/M))
)

, (51e)

b(2)i = 1

N
H3(2π i/M), (51f)

b(3)i = 1

N

(
H′

4(2π i/M)+9(H′
5(2π i/M)+ H′

5(2π i/M))
)

, (51g)

b(4)i = 1

N
H6(2π i/M) (51h)

for σ ′
k =

∑M
j=1 H′

k(2π j/M). Due to the block circulant structure,

det(H (p)(8)) =
M−1∏

q=0

det(Jq), (52)

where47,56,57

J (p)
q = −ε

[
a(p)Im −

M−1∑

k=0

b
(p)

k e2π ikq/M
1m

]
. (53)

By an application of the matrix determinant lemma,58 the eigenval-

ues λ(p) and λ
(p)
q of H (p) satisfy

0 = |λ(p)IN − H (p)|

=
M−1∏

q=0

∣∣∣∣∣(λ
(p) + εa(p))Im − ε

M−1∑

k=0

b
(p)

k e2π ikq/M
1m

∣∣∣∣∣

= (λ(p) + εa(p))
N−M

×
M−1∏

q=0

(
λ(p)q + εa(p) − εm

M−1∑

k=0

b
(p)

k e2π ikq/M

)
.

Furthermore, each H (p) can be diagonalized as H (p) = Q3(p)Q−1,
where

3(p) = Diag(λ(p), . . . , λ(p), λ
(p)
0 , . . . , λ

(p)
M−1),

with λ(p) repeated N − M times. As for the splay state, H (p), there-
fore, commutes and

0 = |J − µI2N|

=
∣∣(3(1) − µIN)(3

(4) − µIN)−3(2)3(3)
∣∣ ,

so that the characteristic equation of J is

0 =
[
(λ(1) − µ)(λ(4) − µ)− λ(2)λ(3)

]N−M

×
M−1∏

q=0

[
(λ(1)q − µ)(λ(4)q − µ)− λ(2)q λ

(3)
q

]
. (54)

Hence, the eigenvalues of J are the eigenvalues µ± of

3 =
[
λ(1) λ(2)

λ(3) λ(4)

]
= −ε

[
a(1) a(2)

a(3) a(4)

]
, (55)

each of multiplicity N − M (corresponding to intracluster perturba-
tions) and the eigenvalues µ±

q of 3q as in (45) for q = 0, . . .M − 1,

where λ
(p)
q are as in (42) replacing N with M (the intercluster eigen-

values, which are the eigenvalues of the splay state in an M node
network). Note that 30 has a zero eigenvalue (the purely rotational
eigenvalue). It is clear that the splay state is a special case where
M = N and m = 1. Synchrony is the special case where M = 1 and
m = N and we note that the stability conditions for synchrony in
globally coupled networks are recovered since here the non-zero
eigenvalue of30 is κ + ε(H5(0)+ H6(0)) and3 = M(9) as in (34).
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B. Two-cluster states in globally coupled networks

We now consider network states where the N nodes in a glob-
ally coupled network (wij = 1/N) lie in two clusters denoted CA

and CB containing NA ≤ N/2 and NB = N − NA nodes, respectively.
We label nodes such that i ∈ CA for i = 1, . . . , NA and i ∈ CB for
i = NA + 1, . . . , N. Without loss of generality, we may assume that
phase of nodes in CA is θA = �t and nodes in CB have phase
θB = �t + χ , where � is the collective frequency of the solution
and χ is the phase difference between the clusters. The clusters will
generally have different orbits (coinciding with differing isostables
of the uncoupled nodes) such that for i ∈ CA, ψi(t) = 9A and for
i ∈ CB, ψi(t) = 9B, where9A and9B are constants.

Using (22), equations for the collective frequency, phase dif-
ference, and cluster orbits can be determined. The four equations
defining�, χ ,9A, and9B are

� = ω + ε

N

[
NA (H1(0)+9A(H2(0)+ H3(0)))

+ NB (H1(χ)+9AH2(χ)+9BH3(χ))

]
, (56a)

0 = κ9A + ε

N

[
NA (H4(0)+9A(H5(0)+ H6(0)))

+ NB (H4(χ)+9AH5(χ)+9BH6(χ))

]
, (56b)

� = ω + ε

N

[
NA (H1(−χ)+9BH2(−χ)+9AH3(−χ))

+ NB (H1(0)+9B(H2(0)+ H3(0)))
]
, (56c)

0 = κ9B + ε

N

[
NA (H4(−χ)+9BH5(−χ)+9AH6(−χ))

+ NB (H4(0)+9B(H5(0)+ H6(0)))
]
. (56d)

Equations (56b) and (56d) can be solved for 9A and 9B in terms
of functions of χ . Substituting the result into (56a) and (56b), we see
that χ is a root of a nonlinear periodic function in terms of functions
of χ . The roots can be determined, typically using numerical root
finding schemes. For given values of NA, NB, and ε, there can be
many possible solutions (�,χ ,9A,9B). Synchrony, (�, 0,9 ,9), is
a solution for all values of NA, NB, and ε, where 9 and � are given
by (31) and (32), respectively, with ci = 1 for all i. However, we are
interested in states with χ 6= 0.

Linearizing around a two-cluster state, we find that the Jaco-
bian J is of the form (29), where 8 = (0, . . . , 0,χ , . . . χ). Here,
each of the N × N block matrices H (p)(8), p = 1, . . . , 4 themselves
have a block structure

H (p)(8) =
[

M
(p)
AA M

(p)
AB

M
(p)
BA M

(p)
BB

]
, (57)

where letting 1N×M denote the N × M matrix of ones,

M
(p)
AA = ap1NA×NA

+ sA
p INA

, (58a)

M
(p)
AB = bp1NA×NB

, (58b)

M
(p)
BA = cp1NB×NA

, (58c)

M
(p)
AA = dp1NB×NB

+ sB
p INB

. (58d)

The coefficients ap, bp, cp, dp, s
A
p , and sB

p are given in Appendix B,

where they are arranged into 2 × 2 matrices A , B, C , D , S A, and
S B. The block structure of J facilitates the computation of its
eigenvalues. As shown in Appendix B, the eigenvalues correspond-
ing to intracluster perturbations are found to be the eigenvalues,µ±

A ,
of S A each with multiplicity NA − 1 and the eigenvalues µ±

B of S B

each with multiplicity NB − 1. For stability with respect to intraclus-
ter perturbations, it is required that Trace(S A) < 0, det(S A) > 0,
Trace(S B) < 0, and det(S B) > 0. The remaining four eigenvalues
correspond to intercluster perturbations and are the eigenvalues of
the 4 × 4 block matrix

JM =
[
S A + NAA NAB

NBC S B + NBD

]
. (59)

Row and column operations show that one of the eigenvalues of
JM is the expected zero eigenvalue due to purely rotational eigen-
modes. The others, corresponding to changes in the phase difference
between clusters, and changes in the two isostable values 9A, 9B,
are required to have negative real part for the stability of the clus-
ter state. They satisfy a cubic characteristic polynomial µ3 + q1µ

2

+ q2µ
3 + q3 = 0. By Routh’s stability criterion, all roots of this cubic

polynomial lie in the left half-plane when q1 > 0, q2 > 0, q3 > 0,
and q1q2 > q3. Reducing to the phase-only case, we recover known
results for phase-reduced networks.44,47,59

IV. A COMPARISON OF HIGHER-ORDER PHASE AND

PHASE-ISOSTABLE REDUCTIONS

In Sec. III, we have used the phase-isostable network
equation (20) to determine with greater accuracy conditions
for the existence and stability of phase-locked states. Other
authors have used an alternative approach based on isostable
coordinates to describe network phenomena that cannot be
observed using first-order phase reduction. Rather than work
with the phase and isostable equations, it is possible to use
isostable coordinates to obtain higher-order phase reduction.
The process to obtain this reduction, given by Park and Wil-
son in Ref. 1, involves expanding the isostable coordinate as
ψ(t) = εp(1)(t)+ ε2p(2)(t)+ · · · , where p(k)(t) are O(1). A hier-
archy of linear differential equations can be found and solved
for the p(k)(t) to any order. Substituting back into the phase
equation gives the higher-order phase reduced equation includ-
ing terms up to O(ε3) and after approximation using first-order
averaging as
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dθi

dt
= ω + ε

N∑

j=1

wijH1(θj − θi)+ ε2

N∑

j,k=1

[
wijwikH2(θj − θi, θk − θi)+ wijwjkH3(θj − θi, θk − θi)

]

+ ε3

N∑

j,k,l=1

[
wijwikwilH4(θj − θi, θk − θi, θl − θi)+ wijwikwklH5(θj − θi, θk − θi, θl − θi)

+ wijwjkwjlH6(θj − θi, θk − θi, θl − θi)+ wijwjkwklH7(θj − θi, θk − θi, θl − θi)

+ wijwikwjlH8(θj − θi, θk − θi, θl − θi)
]
, (60)

where H1, . . . , H8 are defined in Appendix C. Wilson and
Ermentrout32 previously explicitly derived these equations up to
order ε2, while Park and Wilson1 indicate how the equations may
be derived to any order, giving explicit equations to order ε3. How-
ever, the form of the higher-order phase reduction given in Ref. 1
differs from (60). In line with other work on higher-order phase
equations,2,37 we observe in (60) that for networks of more than two
nodes, the higher-order terms have non-pairwise phase interactions
(i.e., terms involving the phases of three or more oscillators), despite
the interactions between the nonlinear oscillators in (1) being pair-
wise. Park and Wilson,1 however, arrive at a higher-order phase
reduced equation with pairwise interaction terms which we find to
be erroneous. We give details of our calculations leading to (60) in
Appendix C. More recently, Park and Wilson35 have updated their
calculations allowing for non-identical oscillators.

We, therefore, see that there are two related but differ-
ent frameworks, both using isostable coordinates, which extend
standard first-order phase reduction: the phase-isostable network
equation (20) and the higher-order phase reduction (60). An obvi-
ous question is which approach can most accurately capture the
dynamics of the full system (1)? In this section, we answer this
question for the archetypal example of the mean-field complex
Ginzburg–Landau equation, where the linear stability boundaries
for synchrony and the splay state are known and may be com-
pared with approximations of the boundaries found using the
phase-isostable network equation (20) and higher-order phase
equation (60).

A. The mean-field complex Ginzburg–Landau

equation

The normal form of the Hopf bifurcation (or Stuart–Landau
oscillator) is a ubiquitous example of an oscillatory system. When
globally diffusively coupled the result is the mean-field complex
Ginzburg–Landau equation (MF-CGLE). In real coordinates, the
governing equations are of form (1), where xi = (xi, yi)

T, wij = 1/N,

F(xi) =
[
xi − (xi − c2yi)(x

2
i + y2

i )

yi − (yi + c2xi)(x
2
i + y2

i )

]
,

G(xi, xj) =
[
xj − xi − c1(yj − yi)

yj − yi + c1(xj − xi)

]
,

(61)

and c1 and c2 are two real-valued parameters. When ε = 0,
each uncoupled node has a stable limit cycle xγ (t) = (cos(c2t),

− sin(c2t))
T with period T = 2π/c2 and Floquet exponent κ = −2.

We define the phase θj on the limit cycle as θj = c2t + φj so that
θj ∈ [0, 2π) and ω = c2.

In the full system (61), the synchronous state, where
xj = xγ (t) for j = 1, . . . , N, exists for all parameter values. The splay

state is given by xj = (r cos(ϕj), r sin(ϕj))
T, where r =

√
1 − ε and

ϕj = (−c2 + ε(c2 − c1))t + 2π j/N and exists when ε < 1. The lin-
ear stability analysis of these solutions gives closed formulas for
the marginal stability of synchrony (denoted εs) and the splay state
(denoted ε0 when N ≥ 3 and εa when N = 2) for fixed values of c1

and c2 as60,61

εs = −2(1 + c1c2)

1 + c2
1

, (62a)

ε2
a(c

2
1 + 2c1c2 + 3)− 2εa(1 + c1c2) = 0, (62b)

ε0(2ε0 − 1)c2
1 + 4(ε0 − 1)(2ε0 − 1)c1c2

− ε0(ε0 − 1)c2
2 + (3ε0 − 2)2 = 0. (62c)

Here, we compute and compare the approximations to the marginal
stability curves for these states using both the phase-isostable net-
work equation (20) and the higher-order phase reduction (60) in
order to compare their accuracy to the true curves. For complete-
ness, the results are also compared with those obtained by León
and Pazó2 who obtained an alternative higher-order phase reduc-
tion based on the isochrons which are known in closed form for this
system.10,23 We note that both methods based on isostable reduction
will generalize to any system; however, the approach of Ref. 2 relies
on having a closed formula for the isochrons. We choose to com-
pare the phase-isostable network equations to first-order in ψ with
the second and third-order phase reductions since these reductions
require comparable computational effort in terms of calculating the
required terms in the expansions (11).

Using (12), normalizing as appropriate and denoting r̂(t)
= (cos(c2t), − sin(c2t))

T and ϕ̂(t) = (sin(c2t), cos(c2t))
T, we obtain

g(1)(t) = A(r̂(t)+ c2ϕ̂(t)),

g(2)(t) = A2

2

(
(3 − c2

2)r̂(t)+ 4c2ϕ̂(t)
)

,
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Z(0)(t) = c2 r̂(t)− ϕ̂(t),

Z(1)(t) = 1

A
ϕ̂(t),

Z(2)(t) = − c2

2
r̂(t)+ 1

2
ϕ̂(t),

I(0)(t) = 1

A
r̂(t),

I(1)(t) = −3r̂(t)+ c2ϕ̂(t),

I(2)(t) = A

2

(
(3 − c2

2)r̂(t)− 4c2ϕ̂(t)
)

,

where A = ‖g(1)(0)‖ = (1 + c2
2)

−1/2
. Calculating the expansions for

the coupling function (16), we find that J2 = −J1 and since the
coupling is linear, all Hessian terms Hq vanish.

1. The phase-isostable network equation

transformation

Considering first the transformation to phase-isostable net-
work equation (20), we calculate that the averaged coupling func-
tions as in (21) are

H1(χ) = (c2 − c1) (cos(χ)− 1)+ (1 + c1c2) sin(χ), (63a)

H2(χ) = A(1 + c2
2)(c1 cos(χ)− sin(χ)) = −H3(χ), (63b)

H4(χ) = 1

A
(c1 sin(χ)+ cos(χ)− 1) , (63c)

H5(χ) = 2 + (c1c2 − 3) cos(χ)− (3c1 + c2) sin(χ), (63d)

H6(χ) = (c1 + c2) sin(χ)+ (1 − c1c2) cos(χ). (63e)

From (34) with 9 = 0, we find that synchrony is stable in the
globally coupled network when ε > −1 and

2ε(1 + c1c2)+ ε2(1 + c2
1) > 0.

The linear stability boundary for synchrony using the phase-
isostable network equations, denoted εs,PI is, therefore, identical to
the closed formula for the full dynamics (62a) εs,PI = εs.

For the splay state (that exists only when ε < 1), we find
that the collective orbit satisfies 9 = ε/(2A(ε − 1)) and � = c2

− ε(c2 − c1) from (37). It can be seen that this agrees precisely with
the orbit in the full system (61) as it can be computed that for

the MF-CGLE, isostables are circles of radius r(ψ) =
√

k/(ψ + k)
where I(0) = −2kr̂(t).10,23 Since we have chosen to normalize such
that k = −(2A)−1, we find that the orbit for the splay state in the
phase-isostable transformed system is r(9) =

√
1 − ε.

Using the results of Sec. III A 2, we can compute the conditions
for linear stability of the splay state. When N = 2 (so the splay state
is the antisynchronous solution) the eigenvalues of the Jacobian are
0, −2(1 − ε) and the eigenvalues of 31 given by (45). Since matrix
31 has real entries in this case, the eigenvalues have a negative real

part when Tr(31) < 0 and Det(31) > 0. This gives stability bound-
aries ε = 1/2, ε = 0, and ε = εa,PI, where εa,PI satisfies

(c2
1c

2
2 − 2c1c2 − 3)ε2

a,PI + (4c1c2 + c2
1 + 5)εa,PI − 2(c1c2 + 1) = 0.

(64)

When N ≥ 3 and finite and also in the large N limit the non-
trivial marginal linear stability boundary for the splay state, denoted
ε = ε0,PI, can be shown to be given by (see Appendix D),

ε5
(
(c2

2 + 9)(1 + c1c2)(c1c2 − 5)
)

+ ε4
(
8c3

2c1 + (5 − 19c2
1)c

2
2 + 152c1c2 + 9c2

1 + 177
)

+ ε3
(
−4c3

2c1 + 8(2c2
1 + 1)c2

2 − 260c1c2 − 20c2
1 − 284

)

+ ε2
(
−4(3 + c2

1)c
2
2 + 224c1c2 + 16c2

1 + 232
)

+ ε
(
4(c2

2 − c2
1)− 96(1 + c1c2)

)
+ 16(1 + c1c2) = 0. (65)

2. The higher-order phase reduction

The synchronous solution of (60) with θi = θ for
i = 1, . . . , N in the case of global coupling wij = 1/N is guaran-
teed to exist. The linearization about the synchronous state has the
Jacobian

−L ξ = −L

(
εH

′
1(0)+ ε2

3∑

m=2

[
∂Hm

∂χ

∣∣∣∣
(0,0)

+ ∂Hm

∂η

∣∣∣∣
(0,0)

]

+ε3

8∑

m=4

[
∂Hm

∂χ

∣∣∣∣
(0,0,0)

+ ∂Hm

∂η

∣∣∣∣
(0,0,0)

+ ∂Hm

∂ξ

∣∣∣∣
(0,0,0)

])
,

(66)

where L is the graph Laplacian for global coupling given by Lij

= −1/N + δij. This has an (N − 1 degenerate) eigenvalue of +1 and
therefore synchrony is stable in the higher-order phase reduction
if ξ > 0. Calculating each of the functions H1, . . . , H8 for the MF-
CGLE as described in Appendix C we observe that

ξ = ε(1 + c1c2)+ ε2 (1 + c2
2)c

2
1

2
+ ε3 (c1c2 − 1)(1 + c2

2)c
2
1

4
. (67)

Therefore, keeping only the terms up to ε2, we obtain the linear
stability boundary for the second-order phase reduction as

εs,2 = −2(1 + c1c2)

c2
1(1 + c2

2)
, (68)

which matches identically with the result from the second-order
phase reduction of León and Pazó2 whose reduction is based on
the isochrons for the MF-CGLE rather than the isostable coordi-
nates used here. The third-order phase reduction gives the values
for marginal linear stability for fixed values of c1 and c2 as εs,3

satisfying

ε2
s,3(c1c2 − 1)(1 + c2

2)c
2
1 + 2εs,3(1 + c2

2)c
2
1 + 4(1 + c1c2) = 0, (69)

whereas the third-order reduction of León and Pazó2 gives the value
as ε∗

s,3 satisfying

(ε∗
s,3)

2
(1 + c2

2)c
3
1c2 + ε∗

s,3(1 + c2
2)c

2
1 + 2(1 + c1c2) = 0. (70)
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Considering next the stability of the splay state for N ≥ 3, we find that the Jacobian has the form

Jij = Aj−i − δijϒ , (71)

where

Aj = ε

N
H

′
1(2π j/N)+ ε2

N2

3∑

m=2

N∑

k=1

(
∂Hm

∂χ
(2π j/N, 2πk/N)+ ∂Hm

∂η
(2πk/N, 2π j/N)

)

+ ε3

N3

8∑

m=4

N∑

k,l=1

(
∂Hm

∂χ
(2π j/N, 2πk/N, 2π l/N)+ ∂Hm

∂η
(2πk/N, 2π j/N, 2π l/N)+ ∂Hm

∂ξ
(2πk/N, 2π l/N, 2π j/N)

)
, (72)

and ϒ =
∑N

k=1 Ak. The circulant structure allows us to deter-
mine that the eigenvalues of J are λp = νp −ϒ where νp

=
∑N

j=1 Aj exp(2π ijp/N) for p = 0, . . . , N − 1. Then,

λp =
N∑

j=1

Aj

(
exp(2π ijp/N)− 1

)
, p = 0, . . . , N − 1. (73)

Since λ0 = 0, the splay state is stable if Re(λp) < 0 for all p 6= 0.
When N ≥ 3, the second-order phase reduction gives the

boundary for linear stability of the splay state as

ε0,2 = 4(1 + c1c2)

(c2
1 − 1)(1 + c2

2)
, (74)

which again agrees with the second-order phase result of Ref. 2. To
third order, we find the approximation to the boundary is given by

ε2
0,3(c

2
2 + 1)(c2c

3
1 − 3c1c2 − 7c2

1 + 5)

+ 4ε0,3(1 − c2
1)(1 + c2

2)+ 16(1 + c1c2) = 0, (75)

which differs from the result of Ref. 2, who find the approximation

(ε∗
0,3)

2
(1 + c2

2)(2 − 2c2
1 − 3c1c2 + c3

1c2)

+ 2ε∗
0,3(1 + c2

2)(1 − c2
1)+ 8(1 + c1c2) = 0. (76)

When N = 2, we find that for the antisynchronous solution, the
stability boundaries for the second and third-order phase reductions
are, respectively,

εa,2 = 2(1 + c1c2)

c2
1(1 + c2

2)
, (77)

ε2
a,3(1 + c2

2)c
2
1(c1c2 − 3)− 2ε0,3(1 + c2

2)c
2
1 + 4(1 + c1c2) = 0. (78)

3. Comparison of approaches

In Fig. 1, we illustrate for comparison the stability boundary
for each of the approaches (exact, phase-isostable network equa-
tions, phase interactions of first, second, and third order and the
approximations of Ref. 2) of each phase-locked state (synchrony,
antisynchrony when N = 2, splay state for N ≥ 3) when ε is positive.
We choose to fix values of c2 (the intrinsic parameter for the node
dynamics determining the angular velocity) and plot the marginal
stability curves in the (c1, ε) plane, following.2,61 Figure 1 shows the
boundaries for c2 = 0.5 (left), c2 = 1.1 (center), and c2 = 3 (right).

Note that we avoid making the choice c2 = 1 since in this case, (74)
and (75) both have a factor of 1 + c1 giving c1 = −1 as a stability
boundary for both higher-order phase approximations.

For synchrony, we have already observed exact agreement of
the stability boundary for the MF-CGLE and the phase-isostable
network approximation. The top row of Fig. 1 shows that the third-
order phase approximation (εs,3 in dashed purple) provides a slightly
better approximation than the third-order result of León and Pazó
(ε∗

s,3, in dotted green),2 in a neighborhood of (c1, ε) = (−1/c2, 0).

For the antisynchronous solution when N = 2 (middle row
of Fig. 1), we see that phase-isostable approximation (εa,PI of (64),
shown in dashed-dotted light blue) most closely matches the curve
for the MF-CGLE over a range of values of c1 > −1/c2 and ε > 0.

For the splay state where N ≥ 3 (bottom row of Fig. 1), while
ε∗

0,3 (dotted green) may provide the closest approximation to the
curve for the MF-CGLE in a neighborhood of (c1, ε) = (−1/c2, 0),
we observe that this curve (and those for higher-order phase shown
by dotted curves) blow-up for values of c1 away from −1/c2, while
the curve for the phase-isostable approximation ε0,PI, shown in
dashed-dotted light blue, is the only one which has a similar shape
to the curve for the MF-CGLE, providing a bifurcation locus for all
values of c1 < −1/c2. Therefore the phase-isostable approximation
provides the most accurate description of the qualitative behavior
(i.e., the existence of a bifurcation) over a range of values of c1 and
moderate values of ε although it does not accurately predict the
value of ε at which the bifurcation will occur, underestimating in
all cases shown in Fig. 1.

We further note that in the MF-CGLE, below the critical value
of c2 =

√
3 at which the boundaries εs and ε0 become tangent at

ε = 0, there are regions of bistability between synchrony and the
splay state,2 as shown in Fig. 2(a) for c2 = 1.1. The phase-isostable
approximation can reproduce the bistability regions qualitatively
[see Fig. 2(b)], while the phase-based approximations and those of
Ref. 2 cannot. See Fig. 2(c) for the case of the third-order phase
approximation when c2 = 1.1, which has very different regions of
bistability.

Both the full model and the phase-isostable approximation
have a parameter region where neither synchrony nor the splay
state are stable when c2 = 1.1. For c1 = −2, we compare the stable
behavior in this region for the full model with that predicted by the
phase-isostable approximation for a network of N = 3 nodes. The
bifurcation diagrams are as in Fig. 3. We observe that the phase-
isostable approximation captures the bifurcations of synchrony and
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FIG. 1. Comparison of the marginal stability curves for synchrony, (α = s, top), the antisynchronous solution when N = 2, (α = a, middle), and splay state when N ≥ 3
(α = 0, bottom) for the full MF-CGLE (εα , solid blue); first (εα,1, dashed red), second (εα,2, dashed yellow), and third (εα,3, dashed purple) order phase reductions; Revised
the alternative third-order phase reduction of Ref. 2, which uses known expressions for the isochrons for MF-CGLE(ε∗

α,3, dotted green) and the phase-isostable network
approximation (εα,PI , dashed-dotted light blue). For synchrony, the phase-isostable network approximation εs,PI agrees precisely with the exact MF-CGLE boundary. The
second-order reduction of Ref. 2 agrees with the second-order phase reduction for synchrony and the splay state and ε∗

α,2 and ε
∗
α,3 are not computed for the antisynchronous

solution. Left: c2 = 0.5, center: c2 = 1.1, right: c2 = 3.

the splay state (UIS) at moderate values of ε, which cannot be seen
with a first-order phase reduction. Furthermore, the phase-isostable
approximation correctly shows the loss of stability of synchrony
to a periodic two-cluster state as ε decreases through 0.48. It also
correctly predicts that as ε increases the splay state losses stabil-
ity at a Hopf bifurcation to a quasiperiodic nonuniform incoherent
state (NUIS), where the three nodes all have different trajectories.
Again, we observe that the phase-isostable approximation captures
the qualitative dynamics, despite discrepancies in the precise values
of ε for which some of the bifurcations occur and the precise branch-
ing structure. For instance, in the full model, the Hopf bifurcation
of the splay state occurs at ε = 0.393, which in the full model this
occurs at ε = 0.444. The phase-isostable approximation shows the
stable quasiperiodic NUIS bifurcating supercritically directly from
the splay state, while in reality the Hopf bifurcation is subcritical and
the stable quasiperiodic NUIS bifurcates from a periodic two-cluster
state. The phase-isostable approximation also predicts increasingly
complex branching of unstable solutions for increasing ε > 0.6 is
not found in the full model. However, for values of ε, this large
phase-isostable approximation is not expected to be valid.

Park and Wilson35 show analysis of a similar three node net-
work of diffusively coupled complex Ginzburg–Landau models
using the higher-order phase reduction. They also find the loss of
stability of the splay state at a Hopf bifurcation to a quasiperiodic
NUIS with the third-order phase reduction though they do this
through numerical simulation and do not provide any bifurcation
diagrams. Our analysis highlights that the interaction functions can
be calculated analytically and our computations of stability condi-
tions for phase-locked states in Sec. III allow for the explicit location
of bifurcations.

We conclude that the phase-isostable network transformation
better captures the qualitative bifurcation structure of the MF-CGLE
when compared with second and third-order phase reductions.
Since it is the normal form for globally diffusively coupled Hopf nor-
mal form oscillators, it is natural to suppose that this framework is
the most appropriate to use to study linearly coupled networks of
oscillatory nodes near Hopf bifurcation.

It is noted by Park and Wilson1 that the higher-order phase
approximation to the analytical stability boundaries for synchrony
and the antisynchronous solution for a network of N = 2 nodes
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FIG. 2. Stability regions for synchrony (blue) and splay state (red) for (a) the
MF-CGLE, (b) the phase-isostable approximation, and (c) the third-order phase
approximation when c2 = 1.1. The phase-isostable network equations (b) can
qualitatively reproduce the regions of bistability observed for the full system (a),
but higher-order phase approximations cannot (c).

does improve with increasing order. At tenth order, good quantita-
tive and qualitative agreement of the stability boundaries is achieved
for moderate values of ε; however, this does come at huge computa-
tional expense in terms of determining all required terms in the PRC

and IRC expansions. Using the phase-isostable network equation,
approximation to first order may be an acceptable compromise, to
be able to indicate the qualitative network behavior using a simpler
lower-order approximation.

V. NETWORKS OF MORRIS–LECAR NEURONS

The comparison of higher-order phase reductions and the
phase-isostable network equations for the MF-CGLE in Sec. IV
has shown that the phase-isostable network equation approach is
able to predict the qualitative network behavior for moderate val-
ues of interaction strength ε, which the higher-order phase reduc-
tions of similar computation expense cannot. We now use the
phase-isostable framework to reveal network behaviors in small and
large networks of planar Morris–Lecar neurons39 which cannot be
described using traditional first-order phase reduction. The Mor-
ris–Lecar model is the planar model of neuronal excitability in which
oscillations can occur through Hopf, SNIC, or homoclinic bifurca-
tions. The equations describing the node dynamics and our choices
of parameter values are given in Appendix E. Our parameter choices
place the node dynamics near the homoclinic bifurcation. The stable
periodic orbit has κ = −0.4094 and is indicated in Fig. 4 along with
isochrons and selected isostables normalized so that negative val-
ues of the isostable coordinate correspond to points inside the limit
cycle.

The Floquet eigenfunction g(1), and the iPRC and iIRC, Z(0) and
I(0) and their first-order correction terms Z(1) and I(1) are numeri-
cally determined as appropriately normalized solutions of (12) and
the first (voltage) component of the response vectors are depicted
together with the limit cycle in Fig. 5(a).

We consider networks diffusively coupled through the volt-
age variable v so that xi = (vi, wi)

T and G(xi, xj) = (vj − vi, 0)
T and

wij = 1/N in (1). Figure 5(b) shows the resulting six interaction
functions H1, . . . , H6 given by (21). In Sec. V A, we compare the
dynamics of the phase-isostable approximation with that of the full

FIG. 3. Bifurcation diagrams for the MF-CGLE when N = 3 with interaction strength ε as the bifurcation parameter. (a) shows the result for the full model equation (61)
with the angular difference between two nodes on the vertical axis. (b) shows the approximation using the phase-isostable network equation framework (20) with the phase
difference θ2 − θ1 on the vertical axis. Solid (dotted) lines indicate stable (unstable) solutions. Shown are two of the three symmetric branches of each type. We do not
include the branches with θ2 = θ1 since these would obscure the synchronous branch. Parameter values are c1 = −2 and c2 = 1.1. The bifurcation diagrams are produced
using the implementation of AUTO in XPPAUT62 and bifurcation locations in (b) are in agreement with stability computations is Sec. III.
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FIG. 4. Phase portrait for the Morris–Lecar model (E1) indicating the stable limit
cycle (in white). Parameter values are as given in Appendix E. These parameters
place the dynamics near the homoclinic bifurcation so that solutions on the limit
cycle spend a significant portion of the period near the saddle point. Also shown
are the boundary of the basin of attraction of the limit cycle, a selection of isosta-
bles, and colors indicate isochrons connecting points with the same asymptotic
phase. These are computed numerically using the constructive definition (9) and
the method of Fourier averages,63 respectively.

model for two coupled nodes and consider a larger network of 200
nodes in Sec. V B.

A. Two coupled nodes

For a network of two nodes, bifurcation diagrams using the
interaction strength ε as the bifurcation parameter are computed
for both the full model [Fig. 6(a)] and the phase-isostable network
equation (20) [Fig. 6(b)]. For the full model the bifurcation dia-
gram, Fig. 6(a) shows the maximum of the voltage variable for one
of the two nodes on the vertical axis for relatively small values
of the coupling strength ε. In the corresponding diagram for the
phase-isostable approximation [Fig. 6(b)], the vertical axis shows
χ = θ2 − θ1, the phase difference between the two nodes, so that
periodic orbits of the full model correspond to equilibrium points
of the phase-isostable reduced system. Since we choose to work
with phase-isostable network Eq. (20) that are linear in the isostable
coordinates, we find unique branches of synchronous and anti-
synchronous solutions with the isostable coordinate given by (31)
and (37), respectively, in Fig. 6(b). These branches also exist for all
values of ε, except where the value of the isostable coordinate asymp-
totes to positive or negative infinity. There may be more than one
phase-locked state with χ 6= 0,π for a given value of ε depending
on the interaction functions H1, . . . , H6. The existence, stability of
solution branches, and locations of bifurcations in Fig. 6(b) all agree
with the explicit calculations in Sec. III. Taking Fig. 6(a) as ground
truth, we here comment on the extent to which the phase-isostable
framework approximates the dynamics observed in the full system
as the strength ε of the linear coupling increases.

Considering first the synchronous state (in light red), we see
that in the full model, this solution is unstable in the weak coupling
regime for positive ε, but restabilizes at ε = 0.499, where it meets
the branch of phase-locked solutions (shown in purple). Synchrony
is also stable for a small interval of negative ε, before undergoing
a period doubling bifurcation at ε = −0.015. The phase-isostable

FIG. 5. (a) The first (voltage) components of response vectors Z(0), I(0), Z(1),
and I(1) together with the voltage component v(θ) of the limit cycle, and (b) the
interaction functions H1, . . . ,H6 given by (21) for the Morris–Lecar model (E1)
with parameter values as in Appendix E and linear coupling.

approximation, as shown in Fig. 6(b), correctly predicts the sta-
bility type of synchrony in the neighborhood of ε = 0 (as does a
first-order phase approximation). The phase-isostable approxima-
tion is additionally able to capture bifurcations of synchrony for
both positive and negative ε, showing synchrony gaining stabil-
ity where it meets a phase-locked state at ε = 0.0934 and losing
stability at a Hopf bifurcation at ε = −0.407. We note that while
this reproduces the qualitative behavior of the synchronous branch,
the phase-isostable approximation underestimates the precise value
of ε at which the bifurcations occur, just as for the MF-CGLE in
Sec. IV A.

In the full system, antisynchrony (shown in blue in Fig. 6)
is unstable for all negative values of ε, but is stable for 0 < ε

< 0.0831, where the orbit lies inside but close to the synchronous
orbit γ . For 0.004 91 < ε < 0.0831 the stable large amplitude anti-
synchronous solution co-exists with an unstable smaller amplitude

Chaos 34, 013141 (2024); doi: 10.1063/5.0179430 34, 013141-16

© Author(s) 2024

 29 January 2024 13:40:21

https://pubs.aip.org/aip/cha


Chaos ARTICLE pubs.aip.org/aip/cha

FIG. 6. Bifurcation diagrams for two linearly coupled Morris–Lecar neurons with interaction strength ε as the bifurcation parameter. (a) shows the full model equation (E1) with
the maximum of the voltage variable for one of the two nodes on the vertical axis. (b) shows the approximations using the phase-isostable network equation framework (20)
with the phase difference χ = θ2 − θ1 on the vertical axis. Stable (unstable) periodic solutions are shown by solid (dashed) lines with synchrony in light red, antisynchrony
in blue, phase-locked states with χ 6= 0,π in purple, and other periodic states in green [(a) only]. In (b), stable (unstable) quasiperiodic solutions are indicated in yellow
(dark red). Black circles/stars/diamonds indicate period doubling/torus/Hopf bifurcations, respectively (noting that periodic solutions are given by equilibrium points of the
phase-isostable approximation when working with the phase difference χ .) Black squares show limit points where the modulus of an isostable coordinate asymptotes to
±∞. The phase-isostable approximation captures many of the qualitative features of the full model dynamics as discussed in the text. Parameter values for the node
dynamics for both diagrams are as given in Appendix E. The bifurcation diagrams are produced using the implementation of AUTO in XPPAUT.62

antisynchronous solution. The qualitative stability of the branch of
antisynchronous solutions of the full model with orbit closest to
the uncoupled node orbit is also captured by the phase-isostable
reduction, including the fact that it exists for ε < ε∞ where the
phase-isostable framework estimates that ε∞ = 0.0961 (compared
to 0.0831 in the full system). This point is labeled as a limit point
(black square) in Fig. 6. As ε → ε∞ from below the stable solution
branch has9 → −∞ corresponding to a shrinking amplitude orbit
in the (v, w) coordinates approaching the unstable fixed point inside
the uncoupled node limit cycle. We also find a branch of unstable
antisynchronous solutions for ε > ε∞ with 9 positive. As ε → ε∞
from above, this branch has 9 → ∞ (corresponding to a growing
amplitude orbit approaching the outer edge of the basin of attraction
of the uncoupled node limit cycle; see Fig. 4). There is no bifurca-
tion at ε∞; the change in stability here is coincidental. We have not
found a corresponding antisynchronous state with orbit outside of γ
in the full model since it may always be unstable. The phase-isostable
reduction at the given order does not find the unstable small ampli-
tude antisynchronous oscillations since, as previously noted, it gives
a unique value of 9 for each ε. It may be that if equation (20) were
taken to higher order in ε, then this other branch could be revealed.
We note that the phase-isostable framework predicts a small region
(0.0934 < ε < ε∞), where both synchrony and antisynchrony are
stable. This does not occur in the full system.

In the full coupled system, there are also periodic solutions
for which the nodes do not share a common orbit and, therefore,
for each of these, there is a symmetric solution under x1 ↔ x2. For
clarity, Fig. 6(a) shows only the branch for which v1 has the largest
maximum value. A phase-locked solution with x1 performing larger
and x2 smaller amplitude oscillations inside the synchronous orbit
exists for −0.0218 < ε < 0.575 (shown in purple in Fig. 6). Its sta-
bility varies along the branch as it undergoes a series of the saddle
node and torus bifurcations. Many of these occur within the region

near ε = 0, but most obvious in Fig. 6(a) are the torus bifurca-
tions at ε = 0.0472, ε = 0.148, and ε = 0.538 marked by black stars.
There is also an isola of periodic solutions for 0.375 < ε < 0.403, an
example of which is depicted in Figs. 7(b) and 7(d). This solution
is not shown in Fig. 6(a) to avoid confusion with the synchronous
branch since they share similar values of max(v1). For values of
ε ∈ (0.148, 0.375) ∪ (0.403, 0.499), numerical simulations indicate
that the stable solutions are quasiperiodic with oscillations fluc-
tuating around the phase-locked state, as indicated in Figs. 7(a)
and 7(c). In the phase-isostable approximation, branches of sta-
ble phase-locked states with χ 6= 0,π bifurcate from synchrony at
ε = 0.0934 losing stability at a Hopf bifurcation at ε = 0.0484. This
gives rise to stable solutions where χ ,91,92 are all periodic cor-
responding to behavior observed in numerical simulations of the
full model (Fig. 7); however, here these solutions exist over a much
smaller interval of ε values. We also note that the stable phase-
locked state has isostable coordinates of opposite signs for the two
nodes corresponding to one node orbiting outside of γ and the
other inside. As the limit point at ε = 0.0339 is approached, one of
the isostable coordinates asymptotes to positive infinity while the
other asymptotes to negative infinity. Beyond the limit point, there
is another (unstable) branch of phase-locked states with the signs of
the isostable coordinates reversed. This branch of solutions persists
for larger values of ε but is unstable and always has one node with a
large isostable coordinate.

The branch of periodic solutions shown in green in Fig. 6(a)
is created at a homoclinic bifurcation at ε = 0.0381 and meets the
unstable fixed point at ε = −0.0618. This solution has x1 oscillat-
ing near the synchronous orbit γ , while x2 performs very small
amplitude oscillations near the fixed point outside of the basin of
attraction of γ . Since phase-isostable coordinates are valid only
within the basin of attraction of γ , the phase-isostable network
equations are not able to capture this oscillatory solution.
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FIG. 7. Direct numerical simulations of two linearly coupled Morris–Lecar neurons for values of ε where all solutions indicated in Fig. 6(a) are unstable. (a) and (c) ε = 0.25
shows quasiperiodic behavior for both nodes, as is typical for ε ∈ (0.148, 0.375) ∪ (0.403, 0.499). (b) and (d) ε = 0.39 shows periodic behavior for both nodes, as is typical
for ε ∈ (0.375, 0.403). Panels (a) and (b) show network activity in the (v,w) plane (synchronous orbit γ is indicated in black), while the corresponding time series for v1, v2
are shown in (c) and (d). In D, a single period is shown. Node parameters are as in Appendix E.

We conclude that the phase-isostable approximation is able
to capture the qualitative stability of synchrony and antisynchrony
away from ε = 0. Furthermore, it is able to reveal phase-locked
states and quasiperiodic solutions, capturing far more of the full
dynamics than the first-order phase reduction of the model. Since
approximation using phase-isostable coordinates can describe qual-
itative dynamics which first-order phase reduction cannot for a two
node network, we now use the approximation to investigate the
dynamics of larger networks of Morris–Lecar models in Sec. V B.
We note that while the phase-isostable framework can be instructive
concerning network behaviors for relatively weak coupling, since
the expansions rely on the assumption that ψ = O(ε), predictions
for larger values of ε or solution branches where the value of the
isostable coordinate becomes large must be interpreted with cau-
tion. Additionally, the range of values of coupling strength ε where
we expect the phase-isostable network equations to be predictive of
the dynamics of the full network will be limited by the fact that first-
order averaging has been used in the derivation of (20). An approx-
imate upper bound on predictive values of the coupling strength
ε can be shown to be 1/T where T is the period of the uncou-
pled oscillations.64 However, for the Morris–Lecar node dynamics
1/T = 0.122 and we have observed from the direct comparison of
full and approximated dynamics above that the phase-isostable net-
work equations are able to predict qualitative network behavior
beyond this estimated upper bound. If necessary, higher-order aver-
aging techniques64 could be employed to improve the validity region
of the averaged equations.

B. Networks of many Morris–Lecar neurons

We next consider a network of 200 diffusively coupled Mor-
ris–Lecar neurons. We again use the parameter values in Appendix E
so that the response and interaction functions remain as in Fig. 5.
Using (36) and (45), we calculate the stability of the synchronous
and splay states, respectively, over a range of small positive and
negative coupling strength ε. The results are shown in Fig. 8. The
maximal real part of the eigenvalues for synchrony is positive (and,
therefore, the state is unstable) when 0 < ε < 0.0934 and the splay
state is unstable for all values of ε 6= 0. The discontinuity in the max-
imum real part of the eigenvalues for the splay state at ε = 0.0664
corresponds to the discontinuity in the isostable coordinate of the
splay state when the denominator in (37) becomes zero. The splay
state orbit lies inside the node orbit (9 < 0) when ε < 0.0664 and
for ε > 0.0664, the splay state has9 > 0.

We take ε = 0.065, which lies in the range where both
synchrony and the splay state in the phase-isostable approx-
imated framework are unstable and numerically simulate the
phase-isostable network equations to investigate the stable behav-
ior predicted in this region. We initialize the system with
the 200 nodes in a tightly packed group with phase coordi-
nates θi ∈ [0.283 725, 0.283 735] and isostable coordinates
ψi ∈ [2.9794, 2.9798]. Figure 9 shows the evolution in time of the
isostable coordinates. We see the group of nodes initially move
toward the isostable ψ = 0 and remain near the synchronous net-
work state for some time. The group then rapidly desynchronizes
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FIG. 8. The maximal real part of eigenvalues of phase-locked states in a 200
node, globally coupled, phase-isostable Morris–Lecar network plotted against the
coupling strength ε. The synchronous state is shown in black and the splay state
is shown in red.

before
settling into a stable 2-cluster state. The analysis in Sec. III B
confirms the existence of the observed cluster state with NA = 28
and NB = 172 and also that it has phase difference χ =
2.1407 between the clusters that have orbits coinciding with the
9A = −0.1694 and 9B = −0.1868 isostables, also in agreement
with the simulation. The stability analysis further confirms that this
state is stable for ε = 0.065.

For the same value of the coupling strength ε = 0.065, we also
simulate the full network equations from an initial state with (vi, wi)

in a group close to (v, w) ≈ (-0.1,0.07) which has phase and isostable
coordinates (θ ,ψ) = (0.283 73, 2.9796). Snapshots from the simula-
tion are shown in Fig. 10, which also indicates the isostable ψ = 0
that coincides with the synchronous orbit and the isostable corre-
sponding to the splay state for these parameter values (ψ = −19.3)
in the (v, w) space. Initially the nodes are close to synchronous and
are first drawn toward and orbit near to ψ = 0. However, since

FIG. 9. The isostable coordinates of the 200 nodes in the phase-isostable approx-
imation of the diffusively coupled network of Morris–Lecar neurons evolving
with time. The initially near synchronous group moves toward the synchronous
isostable whereψi = 0 for all i before desynchronizing at t ≈ 80 and settling into
a stable two-cluster state from t ≈ 130. In this cluster state, there are 28 nodes in
the cluster with ψ = −0.1694 and 172 nodes in the cluster with ψ = −0.1868.
Interaction functions are as in Fig. 5 and ε = 0.065.

FIG. 10. A series of snapshots of a simulation of the full network of 200 diffusively
coupled Morris–Lecar neurons showing positions of each node (black dots), the
uncoupled limit cycle at ψ = 0 (blue), and the splay state orbit at ψ = −19.3
(red). Parameter values are as in Appendix E with ε = 0.065.

this state is unstable, the cluster soon breaks up and the nodes
spread out and oscillate nearer to the splay state isostable. This
state is also unstable in the full network, and, therefore the sys-
tem oscillates between the splay and synchronous states for a time
before settling at a stable 3-cluster state. The simulations of the
phase-isostable approximation and the full model for equivalent ini-
tial conditions show the same progression from near synchrony,
subsequent desynchronization eventually settling on a cluster state.

For stronger diffusive coupling (ε = 0.4) with the node param-
eters still as in Appendix E, Han et al.40 observed that in the 200 node
network initialized at a near synchronous state, the nodes would at
first behave as we have observed at lower coupling strength, mov-
ing to the synchronous orbit before desynchronizing. However, at
this larger coupling strength, it was observed that the desynchro-
nized nodes spiral in toward the unstable node inside the limit
cycle, before again moving out toward the synchronous orbit. This
behavior repeats resulting in mean-field voltage traces showing large
amplitude fluctuations. Unfortunately, this type of behavior can-
not be captured using the phase-isostable network equations at the
order of (20) as the regime where ε = 0.4 appears to be beyond the
scope of its predictive power. Nonetheless, we have been able to
demonstrate that at smaller coupling strengths, the phase-isostable
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FIG. 11. (a) A stable periodic phase-locked state in the network of two coupled
Morris–Lecar neurons occurring at ε = −0.0129 on the solution branch bifurcat-
ing from the periodic doubling bifurcation indicated at ε = −0.015 in Fig. 6(a).
Since this periodic orbit projected into the two-dimensional node phase space has
a self-intersection, this orbit cannot be described by the linear phase-isostable net-
work equations whose phase-locked solutions all coincide with isostables which
do not have self-intersections. (b) shows the corresponding time series for v1, v2
over a single period.

framework is able to capture the formation of stable cluster states
for parameter values, where both synchronous and splay states
are unstable in agreement with simulations of the full network
equations.

1. Remarks

In Sec. III, we observed that in the phase-isostable network
equations truncated at linear order in the isostable coordinates (or
equivalently O(ε2)) (20), the orbits for individual nodes all coin-
cide with isostables since they have constant isostable coordinate
in the most slowly decaying direction (which is the only direc-
tion we retain here). When the node dynamics are two-dimensional
the phase-isostable coordinates are a transformation from the orig-
inal coordinates of the node model. That is, for each x ∈ B(γ ),
there is a unique corresponding (θ ,ψ). Therefore, since trajecto-
ries of the node dynamics cannot intersect, isostables also have
no self-intersections. However, for periodic orbits of the full net-
work dynamics, the projection of the dynamics of each node onto
the node phase space can have shared orbits which intersect. For
example, Fig. 6(a) indicates a period doubling bifurcation of syn-
chrony at ε = −0.015. The period doubled branch [not shown in
Fig. 6(a)] at ε = −0.0129 is a periodic two-cluster phase-locked
state, which is bistable with synchrony. The shared node orbit is
shown in Fig. 11(a) and we observe that this has a self-intersection.
The linear order truncation of the phase-isostable network equa-
tions used here cannot capture such solutions, but it is possible
that a higher-order expansion would be capable of recovering such
orbits. Higher-order truncation in the network Eq. (20) would also
likely improve the quantitative accuracy of the predictions of the
phase-isostable dynamics with the dynamics of the full system.

VI. CONCLUSIONS

There are two emerging frameworks providing an improved
understanding of the behavior of coupled oscillator networks
through the use of isostable coordinates to capture dynamics off-
cycle. While many authors are choosing to use isostable dynamics to

obtain higher-order phase reductions,1,32,35,36 we instead focus on the
approach that retains the isostable dynamics in the slowest decay-
ing direction. We have obtained existence and stability criteria for
phase-locked states in networks of identical nodes and used these
to demonstrate that for the MF-CGLE the phase-isostable network
equations have far superior capabilities at capturing the qualitative
shape of the stability boundaries of the synchronous and splay states
in networks of arbitrary size when compared with phase reduction
at up to cubic order in the interaction strength. For a network of size
N = 3, the phase-isostable framework can also correctly identify the
stable solution types beyond the loss of the stability of synchrony
and the splay state. We then use the framework to study networks
of 2 and 200 diffusively coupled Morris–Lecar neurons. For the
smaller network, the comparison of bifurcation diagrams for both
full and phase-isostable approximations of the dynamics shows that
the phase-isostable framework can capture qualitative changes in
stability of synchrony and the antisynchronous state as well as the
existence of other phase-locked states and quasiperiodic solutions,
which cannot be described by first-order phase reduction. However,
it is not able to accurately predict the values of the coupling strength
at which bifurcations occur, tending to underestimate these values.
For a network of 200 nodes, for values of the coupling strength
where both synchrony and the splay state are unstable in the full
system and the phase-isostable approximation, the phase-isostable
network equations predict stable cluster states, which are also seen
in numerical simulations of the full equations in this regime. The
phase-isostable network approximation (or reduction in the case of
node dynamics of dimension three or higher) appears to be a useful
tool to indicate qualitative network behavior beyond that which can
be revealed using first-order phase reduction while also keeping the
computational complexity low since only six interaction functions
need to be computed, requiring only four response functions.

For expansions of comparable order and computational effort,
we have observed that retaining the notion of distance from the
cycle through the isostable dynamics outperforms using the isostable
dynamics to refine phase-reduced dynamics in locating bifurcations
of phase-locked solutions. Furthermore, it allows for the analysis
of off-cycle dynamics through the tracking of the isostable coor-
dinate. In Sec. IV A, we found that the phase-isostable network
transformation best captures the qualitative bifurcation structure of
the MF-CGLE. Since it is the normal form for globally diffusively
coupled Hopf normal form oscillators, it is natural to suppose that
this framework is the most appropriate to use to study linearly cou-
pled networks of oscillatory nodes near Hopf bifurcation. We do,
however, note that the recent work of Bick et al.65 generalizes the
techniques of2 to consider Stuart–Landau-like systems with phase-
dependent amplitude emulating the deformed limit cycles expected
away from Hopf bifurcation. They show that a second-order phase
reduction is able to accurately predict the stability properties of
the synchronized and splay orbits when all terms of up to second
order in the coupling strength are included. It would be interest-
ing to compare with corresponding results using a phase-isostable
approach.

We note that the restriction to a single slowly decaying isostable
direction described in this work is most relevant in cases where there
is a significant separation in the magnitude of the real, negative
Floquet exponents κ1 and κ2, (i.e., κ2 � κ1 < 0). In this case, decay
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to limit cycle in directions corresponding to κm, m = 2, . . . , n − 1
may be assumed to occur instantaneously so that (ψi)m ≡ 0 is a
suitable approximation. In cases where node dynamics have dis-
tinct Floquet exponents κ1, κ2 of comparable magnitude, isostable
dynamics in both corresponding isostable directions are likely to
have comparable influence on the node dynamics and should both
be included in the phase-isostable network equation approximation,
requiring an extension of the work presented here.

Although we have chosen to use the orbit of an uncoupled
oscillatory node as the reference for setting up the phase-amplitude
coordinate system, other choices are possible. This has been rec-
ognized by Wilson as a way to handle perturbations that take one
far from the cycle with the development of an adaptive reduction
strategy to construct a more useful reference limit cycle (so that
distances to this reference cycle remain small).66 Alternatively, one
could more simply take a phase-isostable reduction about a sta-
ble periodic network state (e.g., synchrony or another phase-locked
state).29 This approach has been used to investigate control strategies
for desynchronizing populations of neural oscillators under periodic
stimulation.28,67

In the present work, we have investigated finite size networks
with linear (state-dependent) coupling and two-dimensional node
dynamics. There are obvious extensions to this work, incorporat-
ing other forms of coupling, such as event driven interactions, along
the lines described for synaptic interactions, e.g., in Ref. 68, and
also to investigate networks with higher dimensional node dynamics
where retaining a single isostable coordinate dynamics in the most
slowly decaying direction represents a dimension reduction for the
system. The extension to treat dense graphs could naturally build
on the work in Ref. 69 and 70 for Kuramoto networks using the
notion of a graphon. Moreover, the analysis of continuum mod-
els with non-local interactions using phase-amplitude coordinates
seems feasible by generalizing the approach in Ref. 32 developed for
reaction–diffusion equations. Finally, let us mention the challenge
of dealing with delays. At the node level, these can induce oscilla-
tions and, at the network level, can strongly influence patterns of
phase-locked states and their bifurcations. A method for construct-
ing the infinitesimal phase response for delay induced oscillations
has already been developed in Refs. 71 and 72 and it would be inter-
esting to use this functional setting to develop the corresponding
amplitude response, as well as to incorporate delayed interactions
within a phase-amplitude network setting. All of the above are topics
of ongoing work and will be reported upon elsewhere.
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APPENDIX A: HIGHER-ORDER TERMS IN PRC AND

IRC EXPANSIONS

When the n-dimensional system (2) has been reduced to the
dynamics of the phase θ and a single isostable coordinate ψ as in
(10a) and (10b), the expansion to any order of the solution about
the periodic orbit, the PRC and the IRC are given by (11a)–(11c).
Following Ref. 31 and simplifying for the case of a single isostable
coordinate, we here derive the adjoint equations (12a)–(12c), which
must be satisfied by the vector functions g(k), Z(k), and I(k).

1. Asymptotic expansion of eigenfunctions

As in (11a), the deviation of a trajectory from the point with the
same phase on the limit cycle may be expressed as

1x(θ ,ψ) =
∞∑

k=1

ψkg(k)(θ). (A1)

Differentiating with respect to t and using the fact that ψ̇ = κψ , we
have

d1x

dt
=

∞∑

k=1

ψk

(
dg(k)(θ)

dt
+ kκg(k)(θ)

)
. (A2)

With the notation F(x) = [F1(x) . . . Fn(x)]
T, matrices of partial

derivatives evaluated at xγ (θ) on cycle can be defined recursively
by

F(k)q (θ) =
∂vec(F(k−1)

q )

∂xT
∈ R

(k−1)n×n, (A3)

where F(0)q (θ) = Fq(x
γ (θ)). Here, vec(·) is an operator that stacks

each column of a matrix resulting in a single column vector.31,73 The
Taylor expansion of (2) about xγ (θ) then gives

d1x

dt
= J1x +




∑∞
i=2

1
i!
[1xT]

⊗i
vec(F(i)1 (θ))

...∑∞
i=2

1
i!
[1xT]

⊗i
vec(F(i)n (θ))


 , (A4)

where [1xT]
⊗i = 1xT ⊗ · · · ⊗1xT with1xT appearing i times and

⊗ is the Kronecker product. Upon substituting (A1) into (A4),
equating with (A2) and matching terms in ψk, we obtain a first-
order differential equation for g(k) in terms of g(j), where 1 < j < k.31

We can obtain an explicit expression for these differential equations
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by noting that

[1xT]
⊗i =

[ ∞∑

k=1

ψkg(k)T

]⊗i

=




∞∑

j=i

ψ j
∑

A i,j

i⊗

p=1

g(ap)




T

, (A5)

where A i,j is the set of all ordered lists (a1, a2 . . . ai) such that ai ∈ N

and
∑i

p=1 ap = j [for example, A2,3 = {(1, 2), (2, 1)}] and for a list
(a1, a2, . . . , ai) ∈ Ai,j,

i⊗

p=1

g(ap) = g(a1) ⊗ · · · ⊗ g(ai). (A6)

We then find that matching powers of ψk results in the ODE (12a)

for g(k), where α(k) =
[
α
(k)
1 , . . . α(k)n

]T

with

α
(k)
i =

k∑

l=2

1

l!


∑

A l,k

l⊗

p=1

g(ap)




T

vec(Fl
i(θ)), i = 1, . . . , n. (A7)

Thus, α(k) is composed of only the lower order terms g(j), 1 ≤ j <
k, and, therefore, expansion (11a) can be obtained by solving the
equations from the lowest order to successively higher order. It is
noted in Ref. 31 that the equation for g(1) requires normalization
since it has a zero Floquet exponent. We choose the normalization
|g(1)(0)| = 1 in contrast to Ref. 31 that take I(0)(0) · g(1)(0) = 1 as
both normalizations for g(1) and I(0) leading to non-uniqueness of
the expansions.

2. Asymptotic expansion of the PRC and IRC

Again following Wilson,31 we now consider the expansions
of Z (θ ,ψ) and I (θ ,ψ) of (11b) and (11c), respectively. Using
standard arguments, Wilson31 shows that Z satisfies the adjoint
equation

dZ

dt
= − ∂FT

∂x

∣∣∣∣
x

Z , (A8)

which differs from (6) since it describes the phase response to per-
turbations of a trajectory, which is already away from the limit cycle.
Then, we may make the asymptotic expansion

∂FT

∂x

∣∣∣∣
xγ+1x

= JT +
[
b1 . . . bn

]
,

bi =
∞∑

l=1

1

l!
([1xT]

⊗l ⊗ In)vec(F(l+1)
i (θ)), i = 1, . . . , n,

(A9)

so that bi is a column vector and F(l+1)
q is as in (A3). Differentiating

(11b), we may then write (A8) as

∞∑

k=0

ψk

(
dZ(k)

dt
+ kκZ(k)

)
= −

(
JT +

[
b1 . . . bn

]) ∞∑

k=0

ψkZ(k).

(A10)

Let b
(j)
i denote the coefficient of ψ j in bi. Then, equating the coeffi-

cients of ψk in (A10), we find that

dZ(k)

dt
= −

(
JT + kκZ(k)

)
Z(k) −

n∑

i=1

k−1∑

j=0

eT
i Z(j)b

(k−j)
i , (A11)

where ei are the standard unit basis vectors. Using (A5), we can
determine that

b
(j)
i =

j∑

l=1

1

l!





∑

A l,j

l⊗

p=1

g(ap)




T

⊗ In


 vec(F(l+1)

i ). (A12)

Note that (A11)–(A12) is in agreement with Ref. 31 for a single
isostable coordinate and also corrects for a missing term in the
equation given there for Z(2).

Finally, in Ref. 31, it is shown that the adjoint equation for I is

dI

dt
= −

(
∂FT

∂x

∣∣∣∣
x

− κIn

)
I . (A13)

Repeating the arguments for the expansion of Z above, we see that

∞∑

k=0

ψk

[
dI(k)

dt
+ kκI(k)

]
= −

(
JT +

[
b1 . . . bn

]
− κIn

)

×
∞∑

k=0

ψkI(k), (A14)

and then matching coefficients of ψk yields (12c).

3. Normalization of terms in PRC and IRC expansions

Some of Eqs. (12b) and (12c) require normalization to deter-
mine a unique periodic solution. If such a normalization is required,
it may also be computed from the asymptotic expansions and the
definition of the phase and isostable coordinates. Following Ref. 31,
we find that for Z(0), the normalization is Z(0)(θ) · F(xγ (θ)) = ω as
expected. For k ≥ 1, the normalization for Z(k) (for a single isostable
coordinate) can be found by equating powers of ψ in the expan-
sion of the equation ω = θ̇ = Z (θ ,ψ) ·

(
F(xγ (θ))+ d1x

dt

)
with the

result that

0 = Z(k)(θ) · F(xγ (θ))+
k−1∑

l=0

Z(l)(θ) · Jg(k−l)(θ)

+
k−2∑

l=0

Z(l)(θ) · α(k−l)(θ). (A15)

The normalizations for I(k) can be found by equating powers
of ψ in the expansion of the equation κψ = ψ̇ = I (θ ,ψ) ·(
F(xγ (θ))+ d1x

dt

)
, resulting in the normalization

δ1kκ = I(k)(θ) · F(xγ (θ))+
k−1∑

l=0

I(l)(θ) · Jg(k−l)(θ)

+
k−2∑

l=0

I(l)(θ) · α(k−l)(θ). (A16)
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A more useful normalization can be determined for I(0) as
follows. First, observe that

∂ψ

∂x

∣∣∣∣
x

= ∂ψ

∂x

∣∣∣∣
xγ

+ ∂2ψ

∂x2

∣∣∣∣
xγ
1x + · · · , (A17)

and, hence, expanding 1x as in (A1) and comparing powers of ψ

with (11c), we see that I(0) = ∂ψ

∂x

∣∣
xγ

and I(1) = ∂2ψ

∂x2

∣∣∣
xγ

g(1). Then,

dI(0)

dt
= ∂2ψ

∂x2

∣∣∣
T

xγ (θ)
F(xγ (θ)). Therefore, (A16) becomes

κ =
(
∂2ψ

∂x2

∣∣∣∣
xγ

g(1)
)

· F(xγ (θ))+ I(0)(θ) · Jg(1)(θ)

= g(1)(θ) · ∂
2ψ

∂x2

∣∣∣∣
T

xγ
F(xγ (θ))+ g(1)(θ) · JTI(0)(θ)

= g(1)(θ) ·
(

dI(0)

dt
+ JTI(0)(θ)

)
= κg(1)(θ) · I(0)(θ),

where (12c) is used in the final step. Thus, the required normaliza-
tion is satisfied if I(0)(0) · g(1)(0) = 1.

APPENDIX B: STABILITY OF PHASE-LOCKED STATES

1. General phase-locked states

For a phase-locked state 8 = (φ1, . . . ,φN), the linearization of
(20) has 2N × 2N block matrix Jacobian,

J =
[

H (1)(8) H (2)(8)

H (3)(8) H (4)(8)

]
,

where

H (1)
ij (8) = εwij4

(θ)
ij − εδij

N∑

k=1

wik4
(θ)

ik , (B1a)

H (2)
ij (8) = εwijH3(φj − φi)+ εδij

N∑

k=1

wikH2(φk − φi), (B1b)

H (3)
ij (8) = εwij4

(ψ)

ij − εδij

N∑

k=1

wik4
(ψ)

ik , (B1c)

H (4)
ij (8) = εwijH6(φj − φi)+ δij

(
κ + ε

N∑

k=1

wikH5(φk − φi)

)

(B1d)

for

4
(θ)
ij = H′

1(φj − φi)+9iH
′
2(φj − φi)+9jH

′
3(φj − φi),

4
(ψ)

ij = H′
4(φj − φi)+9iH

′
5(φj − φi)+9jH

′
6(φj − φi).

2. Two-cluster states

For two-cluster states where the two clusters have distinct
orbits, the linearization about8 = (0, . . . , 0,χ , . . . ,χ) has 2N × 2N
block matrix Jacobian (29), where each of the blocks H (q) are
themselves block matrices of the form (57). The coefficients in the
definition of the blocks (58a)–(58d) can be rearranged into arrays
and are found to be given by

A =
[
a1 a2

a3 a4

]
= ε

N

[
H′

1(0)+9A(H
′
2(0)+ H′

3(0)) H3(0)
H′

4(0)+9A(H
′
5(0)+ H′

6(0)) H6(0)

]
, (B2a)

B =
[
b1 b2

b3 b4

]
= ε

N

[
H′

1(χ)+9AH′
2(χ)+9BH′

3(χ) H3(χ)

H′
4(χ)+9AH′

5(χ)+9BH′
6(χ) H6(χ)

]
, (B2b)

C =
[
c1 c2

c3 c4

]
= ε

N

[
H′

1(−χ)+9BH′
2(−χ)+9AH′

3(−χ) H3(−χ)
H′

4(−χ)+9BH′
5(−χ)+9AH′

6(−χ) H6(−χ)

]
, (B2c)

D =
[
d1 d2

d3 d4

]
= ε

N

[
H′

1(0)+9B(H
′
2(0)+ H′

3(0)) H3(0)
H′

4(0)+9B(H
′
5(0)+ H′

6(0)) H6(0)

]
, (B2d)

S A =
[
sA
1 sA

2

sA
3 sA

4

]
=
[
−NAa1 − NBb1 ε(NAH2(0)+ NBH2(χ))/N
−NAc1 − NBd1 κ + ε(NAH5(0)+ NBH5(χ))/N

]
, (B2e)

S B =
[
sB
1 sB

2

sB
3 sB

4

]
=
[
−NAa3 − NBb3 ε(NAH2(−χ)+ NBH2(0))/N
−NAc3 − NBd3 κ + ε(NAH5(−χ)+ NBH5(0))/N

]
. (B2f)

We can then rewrite

|J − µI2N| =
∣∣∣∣
A ⊗ 1NA×NA

+ (S A − µI2)⊗ INA
B ⊗ 1NA×NB

C ⊗ 1NB×NA
D ⊗ 1NB×NB

+ (S B − µI2)⊗ INB

∣∣∣∣ . (B3)
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A generalization of the matrix determinant lemma58 says that
for invertible n × n matrix P and invertible m × m matrix Q, if U
and V are n × m matrices, then

det(P + UQVT) = det(Q−1 + VTP−1U) det(Q) det(P). (B4)

Taking P = (S A − µI2)⊗ INA
, Q = (S A − µI2)

−1
and letting

U = (S A − µI2)⊗ 1NA×1 and V = A T ⊗ 1NA×1, we observe that
since UQVT = A ⊗ 1NA×NA

and VTP−1U = NAA ,

det(A ⊗ 1NA×NA
+ (S A − µI2)⊗ INA

)

= det (S A − µI2)
NA−1

det(S A + NAA − µI2). (B5)

This reveals that eigenvalues corresponding to intracluster per-
turbations are given by the eigenvalues of S A each with
multiplicity NA − 1 and the eigenvalues of S B each with
multiplicity NB − 1. The remaining four eigenvalues can be
found by considering intercluster perturbations (φA,ψA,φB,ψB)

= (φA,9A,φB,9B)+ (φ̃A, ψ̃A, φ̃B, ψ̃B) where φA and φB are the
phases of the two clusters in the phase-locked state. Then,

d

dt




φ̃A

ψ̃A

φ̃B

ψ̃B


 =

[
S A + NAA NBB

NAC S B + NBD

]



φ̃A

ψ̃A

φ̃B

ψ̃B


 . (B6)

Therefore, the intercluster eigenvalues are the eigenvalues of the
Jacobian JM in (B6), which is also given in (59). One of these
is zero corresponding to pure rotations, observing that the first
and third columns of JM are identical. The others correspond
to changes in the phase difference between clusters and changes
in the isostable values for the two synchronized clusters. In
conclusion,

det(J − µI2N) = det (S A − µI2)
NA−1

det (S B − µI2)
NB−1

× det(JM − µI4). (B7)

APPENDIX C: HIGHER ORDER PHASE EQUATION

DERIVATION

Here, we follow and correct Park and Wilson1 to derive the
higher-order phase equation (C6) explicitly, including terms up to
cubic order in the interaction strength ε. Park and Wilson1 take
the isostable coordinate as an O(ε) term which may be expressed

as ψ(t) = εp(1)(t)+ ε2p(2)(t)+ · · · where p(k)(t) are O(1). Using
this additional expansion in (10b) and matching terms at different
powers of ε results in a hierarchy of linear first-order differential
equations for the p(k)(t).1 The equations at O(ε) and O(ε2) are

dp(1)i

dt
= κp(1)i +

N∑

j=1

wijh4(θi, θj), (C1)

dp(2)i

dt
= κp(2)i +

N∑

j=1

wij

[
p(1)i h5(θi, θj)+ p(1)j h6(θi, θj)

]
, (C2)

where h4, h5, h6 are given by (19d)–(19f). The forcing terms of
the equation at a given order depend only on the solutions of
lower order equations, and, hence, each can be solved explicitly
in turn using the integrating factor e−κt. Following Refs. 1 and
32 (and also correcting notational errors in Ref. 1), we observe
that

p(1)i (t) =
N∑

k=1

wikq
(1)(θi, θk), (C3)

p(2)i (t) =
N∑

k=1

N∑

l=1

[
wikwilq

(2)(θi, θk, θl)+ wikwklq
(3)(θi, θk, θl)

]
, (C4)

where

q(1)(θi, θk) =
∫ ∞

0

eκsh4(θi − ωs, θk − ωs) ds, (C5a)

q(2)(θi, θk, θl) =
∫ ∞

0

eκsq(1)(θi − ωs, θl − ωs)

× h5(θi − ωs, θk − ωs) ds, (C5b)

q(3)(θi, θk, θl) =
∫ ∞

0

eκsq(1)(θk − ωs, θl − ωs)

× h6(θi − ωs, θk − ωs) ds. (C5c)

Higher-order terms p(k), k > 2 may also be determined (see Ref. 1)
but we do not require these here. Substituting all expansions into
(10a), we obtain the higher-order phase equation

dθi

dt
= ω + ε

N∑

j=1

wijh1(θi, θj)+ ε2

N∑

j,k=1

[
wijwikh2(θi, θj, θk)+ wijwjkh3(θi, θj, θk)

]

+ ε3

N∑

j,k,l=1

[
wijwikwilh4(θi, θj, θk, θl)+ wijwikwklh5(θi, θj, θk, θl)+ wijwjkwjlh6(θi, θj, θk, θl)

+ wijwjkwklh7(θi, θj, θk, θl)+ wijwikwjlh8(θi, θj, θk, θl)
]
, (C6)
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where

h1(θi, θj) = h1(θi, θj), (C7a)

h2(θi, θj, θk) = q(1)(θi, θk)h2(θi, θj), (C7b)

h3(θi, θj, θk) = q(1)(θj, θk)h3(θi, θj), (C7c)

h4(θi, θj, θk, θl) = q(2)(θi, θk, θl)h2(θi, θj)

+ q(1)(θi, θk)q
(1)(θi, θl)h7(θi, θj), (C7d)

h5(θi, θj, θk, θl) = q(3)(θi, θk, θl)h2(θi, θj), (C7e)

h6(θi, θj, θk, θl) = q(2)(θj, θk, θl)h3(θi, θj)

+ q(1)(θj, θk)q
(1)(θj, θl)h8(θi, θj), (C7f)

h7(θi, θj, θk, θl) = q(3)(θj, θk, θl)h3(θi, θj), (C7g)

h8(θi, θj, θk, θl) = q(1)(θi, θk)q
(1)(θj, θl)h9(θi, θj) (C7h)

for h1, . . . , h6 as defined in (19), and for

h7(θi, θj) = Z(0)(θi) · K1(θi, θj)+ Z(1)(θi) · J1g
(1)(θi)

+ Z(2)(θi) · G(xγ (θi), x
γ (θj)), (C8a)

h8(θi, θj) = Z(0)(θi) · K2(θi, θj), (C8b)

h9(θi, θj) = Z(0)(θi) · L(θi, θj)+ Z(1)(θi) · J2g
(1)(θj). (C8c)

Moving to a rotating reference frame, applying first-order aver-
aging and returning to the original variables, we can obtain the
autonomous approximation to the higher-order phase reduced
equation (60), where

H1(χ) = 1

2π

∫ 2π

0

h1(u, u + χ) du, (C9a)

Hm(χ , η) = 1

2π

∫ 2π

0

hm(u, u + χ , u + η) du, m = 2, 3, (C9b)

Hm(χ , η, ξ) = 1

2π

∫ 2π

0

hm(u, u + χ , u + η, u + ξ) du,

m = 4, . . . , 8. (C9c)

APPENDIX D: SPLAY STATE LINEAR STABILITY

BOUNDARY FOR N ≥ 3

In the large N limit, from (48), we calculate

λ(1)q =
{

−εi (i(1 + c1c2)+ c2 − c1) /2 for q = 1,

0 otherwise,
(D1)

λ(2)q =
{

A(i − c1)(1 + c2
2)ε/2 for q = 1,

0 otherwise,
(D2)

λ(3)q =
{
εi(ic1+1)

2A(ε−1)
for q = 1,

0 otherwise,
(D3)

λ(4)q =
{
κ + ε ((i − c1)c2 + ic1 + 5) /2 for q = 1,

2(ε − 1) otherwise.
(D4)

Therefore, using (45), the eigenvalues of the Jacobian for the splay
state are 0 and 2(ε − 1), each of multiplicity N − 1, and the eigenval-
ues of31. It can be shown that there is a pair of eigenvaluesµ = ±iσ
with

σ =
ε
(
c2

2c1 − 2c2 + 3c1)ε
2 + 2(c2 − c1)(2ε − 1)

)

2(ε − 1)(3ε − 2)
, (D5)

when ε = ε0,PI satisfies (65). Equation (65) defines a stability bound-
ary for the splay state in the large N limit. It can similarly be shown
that for finite N ≥ 3, the eigenvalues of the Jacobian are 0, 2(ε − 1)
each of multiplicity N − 2 and the remaining eigenvalues are the
eigenvalues of 31 and their complex conjugates. This gives the
identical equation (65) for the stability boundary.

APPENDIX E: THE MORRIS–LECAR MODEL

The Morris–Lecar model is a planar model of neural activity39

with two ionic currents: an outward non-inactivating potassium
current and an inward, non-inactivating calcium current. Assum-
ing that the calcium dynamics operate on a much faster time scale
than the potassium, the dynamics of an isolated node are given by

Cm

dvi

dt
= Ib − gL(vi − EL)− gKwi(vi − EK)

− gCam∞(vi)(vi − ECa), (E1a)

dwi

dt
= φ(w∞(vi)− wi)λ(vi), (E1b)

where

m∞(v) = 0.5
(
1 + tanh ((v − V1) /V2)

)
,

w∞(v) = 0.5
(
1 + tanh ((v − V3) /V4)

)
,

λ(v) = cosh ((v − V3) / (2V4)) ,

and V1, . . . , V4 and φ are constants. Here, wi represents the frac-
tion of K+ channels open at node i and the Ca2+ channels respond
to vi so rapidly that we assume instant activation. Here, gL is the
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leakage conductance, gK and gCa are the potassium and calcium con-
ductances, EL, EK, and ECa are corresponding reversal potentials,
m∞(v) and w∞(v) are voltage-dependent gating functions, λ(v) is
a voltage-dependent rate, Ib is the applied current, and Cm is the
cell capacitance. Unless otherwise stated, the default model parame-
ters used throughout are as in:40 φ = 1.15, gCa = 1, gK = 2, gL = 0.5,
ECa = 1, EK = −0.7, EL = −0.5, V1 = −0.01, V2 = 0.15, V3 = 0.1,
V4 = 0.145, and Cm = 1. For these parameter values, a limit cycle of
the system arises at Ib = 0.0730 through a homoclinic connection.
We choose Ib = 0.075 to place the system near to the homoclinic
bifurcation. For these parameter values, we find that the periodic
orbit has Floquet exponent κ = −0.4094 and period T = 8.1654.
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