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Abstract We outline mathematical methods which seem to be necessary in
order to discuss crystal structures with non-constant dislocation density ten-
sor(ddt) in some generality. It is known that, if the ddt is constant (in space),
then material points can be identified with elements of a certain Lie group,
with group operation determined in terms of the ddt - the dimension of the Lie
group equals that of the ambient space in which the body resides, in that case.
When the ddt is non-constant, there is also a relevant Lie group (given techni-
cal assumptions), but the dimension of the group is strictly greater than that
of the ambient space. The group acts on the set of material points, and there
is a non-trivial isotropy group associated with the group action. We introduce
and discuss the requisite mathematical apparatus in the context of Davini’s
model of defective crystals, and focus on a particular case where the ddt is
such that a three dimensional Lie group acts on a two dimensional crystal
state - this allows us to construct corresponding discrete structures too.
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1 Introduction

In [1] Davini introduced a kinematical framework for defective solid crystals
wherein three smooth linearly independent vector fields l1(·), l2(·), l3(·) are
supposed to represent an averaged atomic structure, with these ‘lattice vector
fields’ varying on a length scale coarser than interatomic distance. Let us write
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Σ = {{la(·)}, Ω; a = 1, 2 . . . n,Ω ⊆ R
n} (1)

to represent a so-called ‘crystal state’, where n smooth linearly independent
lattice vector fields are defined on a region Ω ⊆ R

n. In this paper, n will be 2
or 3.

To set up continuum mechanics, in this context, it is natural to suppose
that a continuum strain energy density function (per unit volume, say) depends
on values of the lattice vector fields and their derivatives. In the simplest
case, common in discussions of perfect crystals, one supposes that the energy
density depends only on the values of the lattice vector fields (at a point) and
that it has the symmetry of some underlying discrete structure — in linear
elasticity theory, one might choose to assume that the energy density is such
that the elastic moduli have cubic or tetragonal symmetry, say, and so define
a continuum associated with a cubic or tetragonal perfect lattice.

The intention in this paper is to describe the mathematical apparatus
that allows us to discuss an analogous set-up procedure systematically in the
case where the material has defects, and to illustrate these generalities with a
single, explicit, running example. We shall outline what is to be done in the
case of defective crystals later in this introduction, but first it is worthwhile
to consider the perfect crystal case in more depth, to understand the issues
involved.

1.1 Perfect crystals, n = 3

Let n = 3 in (1) and introduce dual lattice vector fields d1(·),d2(·),d3(·) by

la(x) · db(x) = δab, la(x)⊗ da(x) = identity,x ∈ Ω, (2)

where δab is the Kronecker delta, summation convention operates on repeated
indices, and a, b = 1, 2, 3. Denote the non-zero, assumed positive, determinant
of those fields by

n(x) = d1(x) · d2(x) ∧ d3(x), x ∈ Ω. (3)

Each of the quantities ∇ ∧ da(·), a = 1, 2, 3, will be referred to as a Burgers
vector field.

Introduce a different crystal state

Σ∗ =
{

{l∗a(·)}, Ω
∗; a = 1, 2, 3, Ω∗ ⊆ R

3
}

, (4)

and say that states Σ,Σ∗ are elastically related to one another if there
exists a diffeomorphism u : Ω → Ω∗ = u(Ω) such that

l∗a(u(x)) = ∇u(x)la(x), a = 1, 2, 3, x ∈ Ω. (5)

Also, it is convenient to introduce the notion of local elastic relatedness: states
Σ,Σ∗ are locally elastically related to one another if for each x0 ∈ Ω there
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exists a diffeomorphism ux0
defined on a neighbourhood Nx0

of x0 in Ω, with
ux0

(Nx0
) ⊆ Ω∗ such that

l∗a(ux0
(x)) = ∇ux0

(x)la(x), a = 1, 2, 3, x ∈ Nx0
,x0 ∈ Ω, (6)

and vice versa.
Define the dislocation density tensor (ddt) S(·) ≡ (Sab(·)), a, b = 1, 2, 3 by

Sab(x) =
∇ ∧ da(x) · db(x)

n(x)
, a, b,= 1, 2, 3,x ∈ Ω. (7)

Let the ddt deriving from state Σ∗ be denoted S∗(·). Then one calculates from
(5) that if states Σ,Σ∗ are elastically related to one another, then

S∗(u(x)) = S(x). (8)

So each component of S is a scalar elastic invariant, being a function of the
lattice vector fields and their first derivatives, unchanged in value by elastic
deformation in the sense that (8) holds.

One accepts that in a perfect crystal each Burgers vector is identically zero,
and so S is zero by (7). Let x = xiei ∈ Ω, where e1, e2, e3 is an arbitrary
basis of R3. Then there exists a vector potential τ = τi ({xj}) ei, where {xj}
denotes the set of three coordinates x1, x2, x3, such that the components of
da(·) have the form ∂τa/∂xj (as ∇∧da = 0), and those of la(·) have the form
∂xj/∂τa. Now use (5) to calculate the fields l∗a(·) in a crystal state elastically
related to Σ via the diffeomorphism defined by the potential τ (·) and find
that

l
∗

a(τ (x)) = ea, a = 1, 2, 3, x ∈ Ω. (9)

Thus when S = 0 one can assert that the crystal state consists of constant
lattice vector fields modulo elastic deformation. We choose to recast this fact
so as to allow generalization to defective crystals in due course. So introduce
constant fields ea(·) by putting

ea(x) = ea, a = 1, 2, 3, x ∈ Ω. (10)

Let u : R3 → R
3 be the translation (y ∈ R

3 is fixed and arbitrary, below)

u(x) ≡ x+ y, (11)

so ∇u(x) = identity, and rewrite (10) as

ea(u(x)) = ∇u(x)ea(x), a = 1, 2, 3, x ∈ Ω. (12)

Then the vector fields ea(·) are translation invariant in the sense that the
elastic deformation u(·) maps the vector fields to themselves, according to (12).
Moreover this ‘self-similarity’ of the crystal state

{

{ea(·)},R
2; a = 1, 2, 3

}

can
be associated, straightforwardly, with a discrete structure (i.e. a set of points
with non-zero minimum separation of pairs of points) — simply choose three
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linearly independent translations y = ea, a = 1, 2, 3, and construct a non-
trivial set of points T invariant under the three translations. Then if x0 ∈ T ,
it follows that x0 + L ⊆ T , where

L ≡ {x : x = naea, na ∈ Z, a = 1, 2, 3}. (13)

L is the perfect crystal lattice with basis e1, e2, e3, and this is the way that
perfect crystal lattices are associated with continua that have zero ddt, S = 0.
Also, as noted earlier, the symmetries of the perfect lattices are traditionally
used as material symmetry groups for continuum strain energy densities (see
e.g. Green and Adkins [2]) — elements of the corresponding point group can
be represented as changes of basis of L. It is a fact that each such change of
basis of L extends uniquely to a symmetry of the continuum crystal state, in
the sense that each smooth bijection φ : R3 → R

3 that preserves addition (cf.
(11)) determines and is determined by φ(ea), a = 1, 2, 3. This fact lies at the
heart of the traditional procedure (of using symmetries of lattices as material
symmetry groups for ‘perfect crystal’ continua) — it is a rather obvious fact in
the case that S = 0, but the analogous result in the case of defective crystals
(where S 6= 0) is not so obvious (see Parry and Sigrist [3], Nicks and Parry [4]
for the case S = constant, S 6= 0).

1.2 Defective crystals, n = 3

Now suppose that fields {la(·)} are given, with S 6= 0, and consider the set of
partial differential equations

la(ψ(x,y)) = ∇1ψ(x,y)la(x), a = 1, 2, 3,x,y ∈ Ω, (14)

for determination of the function ψ(x,y). Note that (14) generalizes (12),
recalling that u(x) depends on the parameter y in (11). In (14), ∇1ψ(·,y)
denotes the gradient of ψ : Ω ×Ω → Ω with respect to its first argument.

It is one of the main result of Lie group theory that, if S = constant,
(14) has a solution for ψ, and that ψ may be chosen to be invertible in both
arguments with the additional properties:

ψ(e,x) = ψ(x, e) = x,ψ(x,ψ(y, z)) = ψ(ψ(x,y), z),x,y, z ∈ Ω, (15)

where coordinates in Ω are chosen so that those of the point e ∈ Ω are zero. So
ψ can be viewed as a group composition function, with group identity element
e. (Note that properties (15) are evident in the case S = 0,ψ(x,y) = x+ y.)

So, when the ddt is constant, the continuum crystal state has the self-
similarity (14). Note that this implies that Σ is locally elastically related to
itself (put ux0

= ψ(x,x0), l
∗

a(·) ≡ la(·), a = 1, 2, 3 in (6)). We contend that
this fact is useful when a continuum has strain energy density that includes a
dependence on S:

w = w̄({la}, S), (16)
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say, where la, S are interpreted as point values of fields la(·), S(·) calculated
from a crystal state Σ - since only point values of S(·) are needed for the
determination of the energy density, at that point, we can assume that the
fields la(·) are such that S(·) is constant. (We would not be able to make this
assumption were the energy function in (16) to depend on derivatives of S).
When (14) does hold, then, one can exploit the properties of the Lie group
associated with the given ddt S to determine symmetries of corresponding
discrete structures and examine whether or not these extend to symmetries of
the continuum [3–5] .

We shall be concerned in this paper with a more general constitutive as-
sumption than (16). To motivate the assumption made below, first allow that
the energy depends on gradients of lattice vector fields up to some (arbitrary)
finite order r (so it is a ‘differential function’ of order r, in the terminology of
Olver [6]). Note that the components of S(·) are differential functions of order
1, and recall that they are scalar elastic invariants. In generalization of this
note that

la · ∇S, lb · ∇(la · ∇S), · · · , a, b · · · = 1, 2, 3 (17)

are differential functions of order 2, 3, · · · , and that they are also scalar elastic
invariants (see Davini and Parry [7]). In different terminology, they are plastic
strain variables’, unchanged by elastic deformation, and it is an old question
in the theory of inelastic behaviour to determine a set of such kinematic vari-
ables which is sufficient to quantify inelastic behaviour, in some sense. In the
context of this paper, this old question is answered below, see [8] for details.

Let F be the (fields of) directional derivatives of S of order ≤ 3:

F = {(S(·), (la · ∇S)(·), (lb · ∇(la · ∇S))(·), (lc · ∇(lb · ∇(la · ∇S)))(·)) ; a, b, c = 1, 2, 3} .
(18)

Then F is a functional basis of all scalar elastic invariants deriving from the
lattice vector fields in the sense that all scalar elastic invariants (of all orders)
can be calculated if F is known (let ∆(r) consist of the fields of gradients of
lattice vector fields la(·) of order ≤ r, and let ∆∗(r) derive, similarly, from
lattice vector fields l∗a(·). Then f : ∆(r) → R is a scalar elastic invariant if
whenever (5) holds, f(∆∗(r)(u(x)) = f(∆(r)(x)),x ∈ Ω.)

Now let

CMΣ = {g(x);x ∈ Ω, g ∈ F} (19)

be the classifying manifold (of order 3) associated with Σ (cf. the remark
following Theorem 8.19 in Olver [6]), and define CMΣ∗ via (4) similarly. Then
the ‘old question’ is answered as follows: suppose that CMΣ = CMΣ∗ and that
g(x0) = g∗(x∗

0) where g and g∗ are corresponding elements of F and F∗, for
some x0 ∈ Ω,x∗

0 ∈ Ω∗ in particular. Then Σ and Σ∗ are locally elastically
related to each other, and (6) holds with ux0

(x0) = x
∗
0.

That is, the plastic strain variables in F are a ‘complete’ set of such vari-
ables, because if those variables match in two different states Σ,Σ∗, then the
states are locally elastically related to one another. Loosely, the identity of the
classifying manifolds is necessary and sufficient for local elastic relatedness.
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In the body of the paper we shall consider a strain energy density which
is intermediate in generality between (16) and an energy which incorporates
a dependence on all the invariants in F. One can motivate this assumption
by restricting to crystal states that allow ‘neutral deformation’, in Davini and
Parry’s terminology [7], see also [8], however we do not go into this motivation
here. So we suppose that

w = w̄ ({la}, S, {la · ∇S}) , (20)

because we intend to explore the mathematical landscape required in order
to discuss crystal states where S(·) is not constant, and the particular group
structure discussed above is not available. We shall investigate whether or not
there is nevertheless some discrete structure corresponding to the constitutive
fields listed in (20).

1.3 Reformulation of constitutive assumptions, n = 3

Recall, to begin with, that in the case S(·) = constant there is a group structure
deriving from the existence of a solution ψ : Ω × Ω → Ω of (14), and that
the assumption S(·) = constant was motivated by the form (16) of the energy
density. We choose to reexpress S using the Lie bracket of pairs of vector fields
v(·),w(·), thus

[v,w](·) ≡ {(w · ∇)v − (v · ∇)w} (·). (21)

Note the sign convention in (21). Let

L3(·) = [l1, l2](·), (22)

and likewise introduce L1(·),L2(·), the Lie brackets of pairs of lattice vector
fields. Then one may compute, as in [8], [9], that in general

Lb = Sabla, [Lb, lc] = Sac[la, lb] + (lb · ∇Sac)la. (23)

From (23) in the case S(·) = constant,

Lb = Sabla, [Lb, lc] = Sac[la, lb]. (24)

We shall refer to terms such as [l1, l2] as Lie brackets of second order, to
terms such as [L3, lc] = [[l1, l2], lc] as Lie brackets of third order, etc. (and
to la as a Lie bracket of first order, for convenience). It is clear from (24)
that, in the case S(·) = constant, Lie brackets of all orders may be expressed
as (constant) linear combinations of the vector fields la(·). So l1(·), l2(·), l3(·)
provide a basis for the Lie algebra of vector fields formed by taking successive
Lie brackets of the given fields. This gives the existence of a three dimensional
Lie group with composition function ψ satisfying (14).

In fact, this perspective (in the last paragraph) gives a means to exploit
the constitutive assumption (20). First when S(·) = constant, (24) gives Sab =
Lb · da so that (16) can be written in the form

w = w′ ({la}, {La}) (25)
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and we have from the remarks above that {la} is a basis for the vector fields
La(·) and all higher order Lie brackets.

In the case that S(·) is not constant, note that from (23), S and lb · ∇Sac

can be written in terms of {la}, {La} and {[La, lb]}. So (20) can be written as

w = w′ ({la}, {La}, {[La, lb]}) . (26)

By analogy with the reformulation of the assumption S(·) = constant, we
assume that, corresponding to (26), the vector fields la(·),La(·), a = 1, 2, 3
provide (or rather, include) a basis for {[La, lb]} and all higher order brackets.
So {la(·)}, {La(·)} generate a Lie algebra of vector fields, called the ‘lattice
algebra’ by Elżanowski and Preston [10]. Via a result of Palais [11], this gives a
corresponding Lie group of dimension k, 3 < k ≤ 6, and this is the observation
that we shall exploit in this paper. Note that, descriptively, the energy den-
sity (26) depends on the lattice vector fields, the Burgers vectors (which are
determined by {la}, {La}) and on vectors [La, lb] determined by an iteration
of the Burgers vector construction.

In the sequel we highlight, repeatedly, a particular class of two dimensional
crystal states - states where l1(·) , l2(·) and [l1, l2](·) generate a three dimen-
sional lattice algebra, so that there exists a corresponding three dimensional
Lie group, via Palais’ result. This appears to be the simplest non-trivial case
where the dimension of the Lie group associated with the lattice vector fields
is greater than the number of lattice vector fields. This mathematical conve-
nience allows us to focus on issues rather than detailed calculation, and to
exploit familiar results, however we intend to catalogue and investigate more
general low dimensional crystal states in future.

1.4 Two-dimensional crystal states

Let
Σ =

{

l1(·), l2(·), Ω;Ω ⊆ R
2
}

, (27)

and in a new notation define the Lie bracket l3(·) of l1(·) and l2(·) by

l3(·) ≡ [l1, l2](·) ≡ {(l2 · ∇)l1 − (l1 · ∇)l2} (·). (28)

We shall consider the case where l1(·), l2(·) and l3(·) provide a basis for all vec-
tor fields generated by taking successive Lie brackets of l1(·), l2(·). To simplify
even more we shall assume that all Lie brackets of order ≥ 3 are zero. The
corresponding Lie algebra has dimension 3, in this case, as does the associated
Lie group. Thus

[l1, l2] ≡ l3, [l2, l3] = 0, [l3, l1] = 0. (29)

Note that
l3(x) = α(x)l1(x) + β(x)l2(x), x ∈ Ω, (30)

for some functions α, β : Ω → R which are the analogues of the ddt in this
case (recall (23)), and recall that we are interested in the case where at least
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one of the functions α(·), β(·) is not constant. The Lie group corresponding to
(29) is called the Heisenberg group — it is well known, and many useful result
are available. These results will allow us to determine a discrete structure (of
points in Ω) associated with Σ, in generalization of the way that a perfect
lattice is associated with the case S = 0 (for n = 3).

Note that one associates a three dimensional Lie group with lattice vector
fields l1(·), l2(·), l3(·) ≡ [l1, l2](·) defined on Ω ⊆ R

2 by means of the following
result (a particular case of Theorem 1.57 Olver [12]).

Theorem 1 Suppose that lattice vector fields l1(·), l2(·), l3(·) defined on Ω ⊂
R

2 are given, such that (cf. (29))

[li, lj ] = Ckij lk, i, j, k = 1, 2, 3, (31)

where the structure constants Cijk are zero except that C312 = −C321 = 1.
Then there exists a Lie group G, a corresponding Lie algebra g with the same
structure constants relative to some basis v1,v2,v3 of g, and a local group
action λ : G×Ω → Ω such that

∇1λ(e,x)vi = li(x), x ∈ Ω, (32)

where e is the identity element of G,∇1λ(·,x) is the gradient of λ with respect
to its first argument, and

λ(e,x) = x,λ(g1,λ(g2,x)) = λ(ψ(g1, g2),x), g1, g2 ∈ G,x ∈ Ω, (33)

where ψ : G×G→ G is the composition function in G.

It is the group action λ that links the higher dimensional group structure to
the flow defined by the lattice vector fields, and it will turn out that iteration
of the corresponding discrete flows gives a discrete set of points in Ω ⊆ R

2, in
some cases.

One important further point is that, since λ(·,x) maps a three dimensional
group to R

2, for each x ∈ Ω, the isotropy group of x ∈ Ω, defined by

Ix ≡ {g ∈ G : λ(g,x) = x} . (34)

is non-trivial. Clearly Ix is determined by the group action λ, but it is also
true that λ is determined by Ix, see section 2.4 below. This observation will
be useful when it comes to classifying ‘canonical’ forms of the vector fields
l1(·), l2(·) with the properties mentioned.

1.5 Outline of content

We start by briefly recalling salient facts from the theory of Lie groups and
algebras, highlighting the three dimensional case (bearing section 1.4 in mind)
and we recall the notions of homomorphic and isomorphic groups and algebras.
The groups and algebras of interest in this paper (i.e. those such that (29)
holds) are nilpotent, and this term is defined.
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Next we list some useful facts regarding nilpotent groups — foremost
amongst these facts are the following: one may choose coordinates so that
the elements of the group and the elements of the corresponding algebra can
be identified, and in those coordinates, the automorphisms of the group are
represented as linear transformations (they can be thought of as ‘homogeneous
deformations’, in continuum mechanical terms).

We have indicated in section 1.4 that in the case of a three dimensional
nilpotent Lie group G acting on a region Ω ⊆ R

2, the corresponding isotropy
groups (34) are non-trivial. For transitive group actions this leads to the theory
of homogeneous spaces, and we recall some general results, in particular the
construction of the group action from the isotropy group. This allows us to
construct ‘inequivalent’ group actions, for a given G — it is a straightforward
calculation once the automorphisms of G are known.

With these general results at hand, we next calculate canonical forms of
the lattice vector fields satisfying (29), modulo elastic deformation and change
of basis. These lattice vector fields may be obtained from a particular three
dimensional nilpotent Lie group via relations of the form (32) — they are
the infinitesimal generators of the group action, in different jargon. We in-
vestigate what choices of group, algebra, Lie algebra basis and group action
produce the given lattice vector fields — since the lattice vector fields are
the ‘primary’ kinematical variables, we may and do choose coordinates in the
group in canonical fashion (i.e. the different choices of coordinates in the group
have no effect on the lattice vector fields, so we make a particular, convenient,
choice of coordinates).

At this stage we have enough information/apparatus to calculate the set of
points obtained by iterating the flow along the lattice vector fields, and so ob-
tain the analogues of the perfect lattices of traditional crystallography, in this
case where the crystals are defective. Theorem 2 connects group multiplication
in G to flow along l1(·), l2(·), l3(·), and this allows us to use results obtained
by Cermelli and Parry [13]. The final result is simple, but the main point of
the paper is to lay out methods which we hope will allow generalization to a
wider class of defective crystals, with non-constant S(·), than the particular
one considered here.

2 Lie groups and algebras

2.1 Generalities

A Lie group G is a group with the structure of a manifold, such that the group
multiplication and inverse maps are smooth. In this paper we consider groups
G such that an element x ∈ G is uniquely specified by three real numbers
x1, x2, x3 (called the coordinates of x), and write x = xiei, where {e1, e2, e3}
is a basis of R3 in recognition of this fact. The group multiplication function
ψ satisfies relations (15) above, and the coordinates are chosen so that the
group identity element has each coordinate zero.
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As an alternative notation for the product of group elements x,y, which
is ψ(x,y), we shall often write

xy ≡ ψ(x,y). (35)

Let (x,y) denote the commutator of two group elements:

(x,y) ≡ x−1y−1xy. (36)

Then the quadratic term in the Taylor expansion of (x,y) is γ(x,y) (cf. Gor-
batsevich, Onishchik, Vinberg [14]), where

γ(x,y) ≡ Cijkxjykei, (37)

(with y = yiei), and

Cijk ≡

(

∂2ψi

∂xj∂yk
(x,y)

∣

∣

∣

∣

x=y=e
−

∂2ψi

∂xk∂yj
(x,y)

∣

∣

∣

∣

x=y=e

)

. (38)

For our purposes, the vector space R3, with the operation [·, ·] : R3×R
3 → R

3

defined by
[x,y] = γ(x,y) (39)

is the Lie algebra of the group G, and [·, ·] is called the Lie bracket. The Lie
bracket satisfies

[x, [y, z]] + [y, [z,x]] + [z, [x,y]] = 0.

The constants Cijk which define the form γ are called the structure constants
of the Lie algebra.

Vector fields ν(·) defined on G which satisfy

ν (ψ(x,y)) = ∇1ψ(x,y)ν(x), (40)

are said to be right invariant on G, so the lattice vector fields which satisfy
(14) are right invariant. Let ν(·) be right invariant on G and consider the
integral curve of ν(·) through the point x0: this is the set {x(t) : t ∈ R} which
represents the solution of

dx

dt
(t) = ν (x (t)) , x(0) = x0, t ∈ R. (41)

It is a standard result that, if x0 = e, the corresponding integral curve is a one
parameter subgroup of G, and that conversely, any one parameter subgroup
of G represents the integral curve of a right invariant field on G, through e.

Define
ℓa(x) = ∇1ψ(e,x)ea, a = 1, 2, 3. (42)

Then one can show that these fields are right invariant, and that the fields
ℓ1(·), ℓ2(·), ℓ3(·) defined by (42) provide a basis for the vector space of all
right invariant fields on G. Also the vector field ν(·) on G is specified once
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ν(e) is prescribed. By virtue of this remark one can think of the Lie algebra of
G either as the vector space R3, with Lie bracket (39), or as the vector space of
right invariant vector fields on G, with the Lie bracket of vector fields defined
by (21). (Note that the Lie bracket of right invariant fields is right invariant.)

Now (41) has a solution defined for all t ∈ R, and thereby one defines a
mapping exp(tν) : G→ G given by

exp(tν)(x0) = x(t), (43)

and a group element e(tν) ∈ G (as opposed to the mapping exp(tν)) by

e(tν) = exp(tν)(e). (44)

Note that e( ) : R3 → G. e( ) is called the exponential mapping of the Lie
algebra (here R

3) to the Lie group. It is a standard result that

exp(tν)(x) = ψ
(

e(tν),x
)

≡ e(tν)x, tν ∈ R
3, x ∈ G. (45)

2.2 Group and algebra homomorphisms

Let g and h be Lie algebras with Lie brackets [·, ·]g, [·, ·]h respectively. (In the
context of this paper, both brackets [·, ·]g, [·, ·]h map R

3 × R
3 → R

3). A Lie
algebra homomorphism is a linear transformation L : g → h which satisfies

[Lx, Ly]h = L [x,y]g , x,y ∈ g. (46)

If Cg
ijk, C

h
ijk are the structure constants for g,h respectively, then (13),(16),(24)

imply
Ch

ijkLjpLkq = LirC
g
rpq, (47)

where Lei = Ljiej , i, j = 1, 2, 3.
Let G and H be Lie groups with group multiplication functions ψG,ψH

respectively. A smooth mapping φ : G→ H is a Lie group homomorphism if

ψH (φ(x),φ(y)) = φ (ψG(x,y)) , x,y ∈ G. (48)

If g is the Lie algebra of G, and h is the Lie algebra ofH , and φ : G→ H is
a Lie group homomorphism, then ∇φ(0) ≡ L is a Lie algebra homomorphism.
Conversely if L satisfies (46), then there exists a Lie group homomorphism φ

such that ∇φ(0) = L. Also,

φ (eν) = e(∇φ(0)ν), ν ∈ g ≡ R
3, (49)

where φ satisfies (48), where the exponential on the left hand side of (49) is the
exponential which maps g to G, and that on the right hand side maps h to H .
Relation (49) allows one to calculate the Lie group homomorphisms explicitly
if the Lie algebra homomorphisms are found by solving (47). φ(·) (resp. L) is
called a Lie group (resp. algebra) isomorphism if it (resp. L) is invertible. An
isomorphism φ : G → G (resp. L : g → g) is called an automorphism. (φ(·)
and φ−1(·) have to be smooth).
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2.3 Nilpotent groups and algebras, Canonical Group J

Let G be a three dimensional Lie group, with commutator (x,y) ≡ x−1y−1xy.
Let G ≡ G0 and define G1 ≡ (G,G0), the group generated by elements of the
form (x,y),x ∈ G,y ∈ G0. Define Gk ≡ (G,Gk−1) inductively, k ≥ 1. G is
called nilpotent if and only if Gk is the trivial group {e} for sufficiently large
k. For three dimensional nilpotent groups, G ≡ G0 ⊇ G1 ⊇ G2 = {e}.

Let g be the Lie algebra corresponding to a Lie group G, with Lie bracket
[x,y],x,y ∈ g. Let g ≡ g0 and define g1 ≡ [g,g0], the subspace generated by
elements of the form [x,y], x ∈ g,y ∈ g0. Define gk ≡

[

g,gk−1

]

inductively,
k ≥ 1. g is called nilpotent if and only if gk is the trivial subspace {0} for
sufficiently large k. For three dimensional nilpotent algebras, g ≡ g0 ⊇ g1 ⊇
g2 = {0}.

A Lie group is nilpotent if and only if the corresponding Lie algebra is
nilpotent (Gorbatsevich, Onishchik, Vinberg [14]).There is a one–to–one cor-
respondence between isomorphism classes of Lie algebras and isomorphism
classes of (connected and simply connected) Lie groups (c.f.Varadarajan [15]
Theorem 2.8.2).

By the remarks in the introduction (Theorem 1) we are concerned with a
three dimensional Lie group G, with Lie algebra g, that has nonzero structure
constants C312 = −C321 = 1 with respect to a particular choice of basis,
v1,v2,v3 of g. Thus

[v1,v2] = v3, [v2,v3] = 0, [v3,v1] = 0. (50)

Define ψ : R3 × R
3 → R

3

ψ(r, s) ≡ r + s+
1

2
[r, s] (51)

so that if ψ = ψivi, r = rivi, s = sivi, then

(ψi) =

(

r1 + s1, r2 + s2, r3 + s3 +
1

2
(r1s2 − r2s1)

)

. (52)

One can check that ψ has the properties required to be a Lie group composition
function on R

3 ×R
3, and that the corresponding nonzero structure constants

are C312 = −C321 = 1, with respect to v1,v2,v3. We shall denote the Lie group
defined on R

3, with ψ given by (51), or (52), by J — it is the three dimensional
Heisenberg group (see [16]). J is a particular Lie group in the isomorphism
class of Lie groups that have Lie algebra isomorphic to that defined by (50).
We shall call J the canonical group with Lie algebra (50).

We shall show below that it does not matter what particular choice of
group is made when it comes to exploiting group properties in order to describe
discrete structures associated with the lattice vector fields. The above choice
seems to be the simplest, for we have the following results, particular to J (see
Parry [17]:
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(i)

e(x) = exp(x)(e) = x, x ∈ R
3, (53)

this implies that Lie group elements in J may be identified with corre-
sponding Lie algebra elements;

(ii)

(x,y) = [x,y], x,y ∈ R
3, (54)

this implies that the group commutator (which represents the ‘finite’ Burg-
ers vector obtained by successive flow along the right invariant fields defined
by y,x,y−1,x−1) may be identified with the corresponding Lie bracket of
algebra elements;

(iii) Given a (uniform) discrete subgroup D of J , there exist group elements
α1,α2,α3 such that

D = {αn1

1 α
n2

2 α
n3

3 ;n1, n2, n3 ∈ Z} , (55)

in simple generalization of the definition of a perfect lattice, (13). Note
that α3 must be a generating element of D ∩ (J, J).

(iv) If L : j → j (j the Lie algebra of J) is a Lie algebra automorphism, then
there exists a Lie group automorphism φ : J → J such that

φ(x) = Lx, x ∈ j ≡ J, (56)

so

L = ∇φ(0). (57)

It is straightforward to calculate the Lie algebra automorphisms of j —
this is done in [17] and one finds that

L13 = L23 = 0, L33 = L11L22 − L12L21 6= 0, (58)

where Lx = L(xivi) = xi(Lvi) ≡ xi(Ljivj) = (Ljixi)vj .
(v) There are precisely two inequivalent one dimensional subgroups of J , mod-

ulo automorphisms of J .

Proof (of (v))The one dimensional subgroups of J have the form

Hv = {tv;v ∈ j, t ∈ R}, (59)

by (i) above. Let φ : J → J be an automorphism of J , with L ≡ ∇φ(0). Then

φ(Hv) = HLv. (60)

Recall that v1,v2,v3 is a basis of J . We have that:

1. Hh is equivalent to Hv3
modulo automorphism provided that Lv3 = h for

some L satisfying (58). So h = L33v3 and h must be parallel to v3.
2. Hh is equivalent to Hv1

provided Lv1 = h. This requires that, and is
satisfied if, h is any vector not parallel to v3.
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2.4 Homogeneous spaces

Let λ : G×Ω → Ω be a group action, satisfying (33). Suppose that the action
is transitive, so that λ(G,x) = Ω, for all x ∈ Ω. Then (G,Ω) is called a
homogeneous space. Let Ix be the isotropy group of x, cf. (34).

Let H be a subgroup of G and introduce the left coset space G/H by

G/H = {kH ; k ∈ G}. (61)

Note that k1H = k2H if and only if k1 = k2h for some h ∈ H . Then G/H is
a homogeneous space with respect to the group action λ = G×G/H → G/H
defined by

λ(g,kH) = (gk)H, (62)

for if kH is given and lH ∈ G/H is chosen arbitrarily, then λ(lk−1,kH) = lH ,
so the action is transitive.

Define the projection mapping π : G→ G/H by

π(g) = gH, (63)

and choose a section σ : G/H → G such that σ is a smooth right inverse to
π:

π(σ(gH)) = gH. (64)

(The considerations in this paper are local - we do not discuss the existence of
global smooth sections). Note that for the particular crystal state introduced
in section 1.4, G is a three dimensional Lie group, H ⊂ G will be a one
dimensional subgroup, G/H will be parameterized by two real variables and
identified with Ω ⊆ R

2.
Also note that one may define λ : G×G/H → G/H by

λ(g,kH) = π(gσ(kH)), (65)

and check two things: (i) λ satisfies (33), (ii) λ is independent of the choice of
section, σ. We also have (Komrakov et al [18]):

Proposition 1 1. Let (G,Ω) be a homogeneous space and let Ix be the isotropy
group of x ∈ Ω. Then Ix is a closed subgroup of G.

2. Let H be a closed subgroup of a Lie group G, then G/H has the structure
of a manifold, with λ : G×G/H → G/H (defined by (65)) smooth.

That is, given a group action λ, any isotropy group Ix is a closed subgroup
of G, and given any closed subgroup of G one can construct a corresponding
group action. In fact, given a closed subgroup H ⊂ G and the group action
defined by (65), we have that

H = Iπ(e), (66)

for λ(g,π(e)) = π(gσ(π(e))) = π(gh) = gH(h ∈ H), so that λ(g,π(e)) =
π(e) = H if and only if g ∈ H , as stated.
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Recall that, given a lattice algebra of vector fields, from Theorem 1 there
exists a Lie group G and corresponding group action λ from which may recover
the given vector fields via (32). According to the above proposition, one can
now catalogue all group actions by listing the closed subgroups of G.

The following result connects flow along right invariant fields in G with
flow along the lattice vector fields in Ω, when (G,Ω) is a homogeneous space.
It shows that ‘iteration commutes with projection’, and is surely well-known.
Recall that from (32)

∇1λ(e,x)v ≡ lv(x), x ∈ Ω,v ∈ g (67)

is the vector field corresponding to the Lie alebra element v (if we set li(·) ≡
lvi

(·)).

Theorem 2 Let x(ε), ε ∈ R,x(ε) ∈ Ω be defined by

x(ε) = λ(eεvg,x). (68)

Then x(ε) solves
{

d
dε
x(ε) = lv(x(ε)), ε ∈ R,

x(0) = λ(g,x).
(69)

Proof Let v(g) be the right invariant field on G with v(e) = v ∈ g, i.e.

v(ψ(h, g)) = ∇1ψ(h, g)v(h),v(g) = ∇1ψ(e, g)v, h, g ∈ G. (70)

Note also that by differentiating (33)2 with respect to g, setting g = e and
replacing h by g, one obtains

∇1λ(g,x)v(g) = lv(λ(g,x)). (71)

Clearly if x(ε) is defined by (68), then (69)2 holds. Then as

d

dε
(eεvg) =

d

dε
(ψ(eεv , g)) = ∇1ψ(e

εv, g)v(eεv) = v(eεvg), (72)

by (70)1, we find

d

dε
λ(eεvg,x)) = ∇1λ(e

εvg,x)v(eεvg) = lv(λ(e
εvg,x)), (73)

by (72), (71). The result follows by uniqueness of solution of this last differ-
ential equation, with initial condition λ(g,x) ≡ x(0).

Remark 1 Regarding (67), it can be shown that ∇1λ(e,x) is a Lie algebra
homomorphism from g to the lattice algebra, ie.

∇1λ(e,x)[v,w] = [∇1λ(e1x)v,∇1λ(e,x)w],v,w ∈ g. (74)
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3 Three dimensional nilpotent lattice algebras of vector fields in R
2

First we show that Lie brackets of order ≥ 3, in such lattice algebras, are zero.
We are given that the algebra has dimension 3, so [l1, l2](·) 6= 0 and

α[l1, l2](·) + βl1(·) + γl2(·) = 0, α, β, γ,∈ R, implies α = β = γ = 0. (75)

Let Np be the set of Lie brackets of order p ∈ N. Since the algebra is nilpotent,
there exists a least integer k such that Nk 6= φ,Nk+1 = φ. We show that k = 2.
Set

[

[l1, l2], li
]

(·) = ail1(·) + bil2(·) + ci[l1, l2](·), i = 1, 2, (76)

where ai, bi, ci ∈ R, i = 1, 2. Also, for N ∈ Nk set

N = rl1(·) + sl2(·) + t[l1, l2](·), r, s, t ∈ R. (77)

Hence

[N , l1](·) = s[l2, l1] + t{a1l1(·) + b1l2(·) + c1[l1, l2](·)} = 0 ∈ Nk+1,

[N , l2](·) = r[l1, l2] + t{a2l1(·) + b2l2(·) + c2[l1, l2](·)} = 0 ∈ Nk+1. (78)

Hence by (75)

ta1 = tb1 = tc1 − s = 0 and ta2 = tb2 = tc2 + r = 0. (79)

Now t 6= 0, for if t = 0 then r = s = 0 contradicting Nk 6= φ. Then given t 6= 0
we have from (79) that a1 = b1 = a2 = b2 = 0 so from (76)

[

[l1, l2], li
]

(·) = ci[l1, l2](·), i = 1, 2. (80)

Forming brackets of order (k+1), (80) implies in particular

ck−1
i [l1, l2](·) = 0, (81)

and this gives the result (as k ≥ 2, and N3 = φ by (81)).

3.1 Canonical form of vector fields in R
2 with three dimensional nilpotent

lattice algebra

We shall construct all vector fields, l1(·), l2(·), whose components are real
analytic in Ω, which solve (cf. (29))

[l1, l2](·) = l3(·), [l2, l3](·) = 0, [l3, l1](·) = 0, (82)

and continue to write (cf. (30))

l3(x) = α(x)l1(x) + β(x)l2(x), x ∈ Ω. (83)
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Note that since l1(·) and l2(·) are linearly independent at each x ∈ Ω, the
components of the dual lattice vector fields are analytic, and therefore so are
the functions α(·), β(·). From (82) and (83),

[αl1 + βl2, l1] = l1(l1 · ∇α) + l2(l1 · ∇β)− β(αl1 + βl2) = 0,

[αl1 + βl2, l2] = l1(l2 · ∇α) + l2(l2 · ∇β) + α(αl1 + βl2) = 0,

so
l1 · ∇α = αβ, l2 · ∇α = −α2, l1 · ∇β = β2, l2 · ∇β = −αβ. (84)

These relations, (84), imply that

β∇α− α∇β = 0, (85)

as l1(·) and l2(·) are linearly independent. We are assuming that not both of
α(·) and β(·) are identically zero in Ω — suppose initially that α(·) is not
identically zero. Let x0 ∈ Ω be such that α(x0) = 0. Then (84)1,2 give that
∇α(x0) = 0, and by successive directional differentiation of (84)1,2 we find
all derivatives of α (of all orders) are zero. Since α is analytic this leads to a
contradiction. Hence α has one sign in Ω, suppose α > 0. Then from (85)

β = λα, λ ∈ R, (86)

and (84) gives
l1 · ∇α = λα2, l2 · ∇α = −α2. (87)

Introduce l̄1 = l1 + λl2, l̄2 = l2, so that from (87), (83)

l̄1 · ∇λ = 0, l̄2 · ∇α = −α2, [̄l1, l̄2] = αl̄1. (88)

Now, as α > 0, we may change coordinates in Ω by defining u : R2 → R
2 as

follows:

u(x, y) = (t(x, y), y), t(x, y) ≡ − lnα(x, y), (x, y) ∈ R
2. (89)

Let
l′i(u(x, y)) ≡ ∇u(x, y)̄li(x, y), i = 1, 2

and calculate that

l′1(t, y) = (0, τ(t, y)), l′2(t, y) = (e−t, ν(t, y)),

[l′1, l
′

2] = e−tl′1, (90)

for some functions τ, ν : R2 → R. Next the single equation that derives from
(90)3 is an integrability condition that guarantees the existence of a mapping
v : R2 → R

2, with v(t, y) ≡ (t, v(t, y)), such that l′′i (·) defined by

l′′i (v(t, y)) = ∇v(t, y)l′i(t, y), i = 1, 2, (91)

have the form

l′′1(t, v) = (0, et), l′′2(t, v) = (e−t, 0), [l′′1 , l
′′

2 ](t, v) = (0, 1). (92)
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Finally, w : R2 → R
2 defined by w(t, v) = (w, v), where w ≡ et, gives vector

fields ′li(·) of the form

′l1(w, v) = (0, w), ′l2(w, v) = (1, 0), [ ′l1,
′l2](w, v) = (0, 1), (93)

via ′li(w(t, v)) = ∇w(t, v)l′′i (t, v), i = 1, 2. In summary, when α > 0 the
solutions of (82) can be put into the form (93) modulo elastic deformation
and the change of basis l1 → l1 + λl2, l2 → l2. Note that if α < 0 and we let
l1 → l1, l2 → −l2, l3 → −l3, then (82) holds for l̄1 ≡ l1, l̄2 ≡ −l2, l̄3 ≡ −l3
and the coefficient of l̄1(·) in the analogue of (83) is positive. Similar remarks
apply in the case that β(·) is not identically zero inΩ. Also, note that whenever
l1(·), l2(·), l3(·) solve (82), so also do

rl1(·) + sl2(·) + tl3(·), r̄l1(·) + s̄l2(·) + t̄l̄3, (rs̄− sr̄)[l1, l2](·), (94)

provided rs̄ − sr̄ 6= 0, r, s, t, r̄, s̄, t̄ ∈ R. Since the particular changes of basis
used to derive (93) have the form (94), for specific choices of r, s, t, r̄, s̄, t̄, it
follows that the (analytic) vector fields which solve (82) can be expressed as

l1(x, y) = (0, x), l2(x, y) = (1, 0), l3(x, y) = (0, 1), (95)

modulo elastic deformation and change of basis (of the form (94)). (This is
case 22 in Table 1 of González-López et al. [19], with η1(x), η2(x) a basis of
solutions of η′′(x) = 0).

3.2 Homogeneous space (J,Ω)

Recall from section 3.2 that the one dimensional subgroups of J have the
form Hv given by (59) — one thinks of them as ‘straight lines’ through the
origin, in J . They are closed subgroups (the complement is open), and there
are two inequivalent subgroups modulo automorphisms of J . Let us calculate
the group action corresponding to the subgroup Hv1

(the composition in J
has components (52) with respect to a basis v1,v2,v3 ∈ R

3). The projection
mapping π : J → J/Hv1

is given by:

π(g) = gHv1
=
{

ψ(g, tv1); t ∈ R
}

=
{

(g1 + t, g2, g3 +
1
2 (−g2t)) : t ∈ R

}

. (96)

There is precisely one element of this coset with first component zero (that
element with t = −g1), so we may parameterize gHv1

by (g2, g3 +
1
2g1g2). Let

g2, g3 +
1
2g1g2 be the two components x1, x2 of a point x = xiγi, i = 1, 2,

of R2, where γ1,γ2 is a basis of R2. This choice of basis allows us to identify
J/Hv1

with R
2. We may also choose

σ(gHv1
) = σ

(

(g2, g3 +
1
2g1g2)

)

= (0, g2, g3 +
1
2g1g2), (97)

so
σ
(

(x, y)
)

= (0, x, y), (x, y) ∈ R
2. (98)
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Therefore the group action λ : J × R
2 → R

2 (regarding G/Hv1
as R2) corre-

sponding to this projection is

λ(p, (x, y)) = π(pσ(x, y)) = π(ψ(p, (0, x, y))

= π(p1, p2 + x, p3 + y + 1
2p, x)

= (p2 + x, p3 + y + p1x+ 1
2p1p2). (99)

The lattice vector fields deriving from this projection are, from (32),

li(x) = ∇1λ(e,x)vi =
∂λr

∂pi
(e,x)γr, i = 1, 2, x ∈ R

2. (100)

So from (100) the components of li(·) with respect to the basis γ1,γ2, are
(

∂λr

∂pi

(e,x)
)

and this gives

l1(x) = (0, x), l2(x) = (1, 0), l3(x) = (0, 1). (101)

Note that these are the canonical forms (95) of the lattice vector fields. So
we have an explicit construction of the objects whose existence is asserted in
Theorem 1, namely we have a Lie group J , Lie algebra j, basis v1,v2,v3 of j
and group action λ : J × R

2 → R
2 such that (32) holds, in this case.

Remark 2 – Regarding Theorem 1, if {G, g,v1,v2,v3,λ} and
{G′, g′,v′1,v

′
2,v

′
3,λ

′} are such that (32) holds, ie

∇1λ(e,x)vi = ∇1λ
′(e′,x)v′i (≡ li(x)), i = 1, 2, 3, (102)

where e, e′ are the identity elements in G,G′ respectively, then G and G′

are isomorphic, as are g and g′. That is, given any one choice of group
and corresponding group action, other choices preserving the infinitesimal
generators are isomorphic to that chosen.

– Given a particular choice of {G, g,v1,v2,v3,λ} the {vi} and λ can be
chosen modulo automorphisms of G and g, when the infinitesimal genera-
tors are given. This implies that the isotropy group can be chosen modulo
automorphisms of G, in that case, and the calculation above chose Hv1

as
isotropy group. (The infinitesimal generators l1(·), l2(·) would commute,
were we to choose Hv3

as isotropy group, contradicting the starting as-
sumption that S 6= 0.)

4 Sets of points obtained by discrete flow along the lattice vector
fields

Given a two-dimensional crystal state Σ as in (27), with vector fields l1(·), l2(·)
generating a three-dimensional lattice algebra, we generate a set of points SΣ

in Ω by the following iterative process: choose a point x0 ∈ Ω ⊆ R
2 as initial

point, construct two points x(1),x(−1) by solving (41) in the form

dx

dt
(t) = l1(x(t)), x(0) = x0, t ∈ R, (103)
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for x(t). Obtain two further points by solving the analogue of (103) with l1(·)
replaced by l2(·). Iterate this process, using the four points so obtained as
initial points in turn. Continuing, one obtains SΣ .

We use theorem 2 to calculate SΣ , and choose G = J , the canonical group.
So put g = e in theorem 2 to obtain that x(t) = λ(etv1 ,x0) solves (103).
Let π,σ be the projection and section mappings of section 3.2, so λ(g,x) =
π(gσ(x)). Then

x(t) = λ(etv1 ,x0) = π(e
tv1σ(x0)) = π(e

tv1g0), (104)

if we set

g0 = σ(x0). (105)

Hence x(1) = π(ev1g0), x(−1) = π(e−v1g0), and the two further points ob-
tained are π(ev2g0), π(e

−v2g0). It follows that

SΣ = π(Dg0), (106)

where D is the subgroup of J generated by ev1 and ev2 .
Now, in J , group and algebra elements may be identified, ex = x, and

(x,y) = [x,y], according to (53) and (54). Hence

(ex, ey) = (x,y) = [x,y] = e[x,y], x,y ∈ J. (107)

Since v3 = [v1,v2], because the structure constants in j correspond to those
in the lattice algebra, we have

(ev1 , ev2) = ev3 , so ev2ev1 = ev1ev2(ev2 , ev1) = ev1ev2e−v3 . (108)

It follows that any element of D can be written in the form

d ≡ en1v1en2v2en3v3 , n1, n2, n3 ∈ Z, (109)

cf. (55). Then results of Cermelli and Parry [13] gives that d = divi where

(di) = (n1, n2, n3 +
1
2n1n2), n1, n2, n3 ∈ Z. (110)

From (106), we need to calculate π(dg0),where g0 = σ(x0). So put x0 =
(x01, x

0
2),σ(x0) = (0, x01, x

0
2) to find:

π(dσ(x0)) = π(ψ((n1, n2, n3 +
1
2n1n2), (0, x

0
1, x

0
2))

= π((n1, n2 + x01, n3 +
1
2n1n2 + x02 +

1
2n1n

0
1)

= (n2 + x01, n3 + x02 + n1n2 + n1x
0
1)

= (x01, x
0
2) + n1(0, x

0
1) + (n2, n3 + n1n2), n1, n2, n3 ∈ Z. (111)

Let K ≡ {n1(0, x
0
1);n1 ∈ Z} be the set of integer multiples of (0, x01), and note

that for fixed n1,

{(n2, n3 + n1n2);n2, n3 ∈ Z} = Z
2. (112)
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Then

SΣ = π(Dσ(x0))

= x0 +K + Z
2. (113)

Notice that:

1. If x01 is irrational, SΣ contains {x0 + (n2, n1x
0
1 + k);n1, n2, k ∈ Z}, so SΣ

is dense on an infinite set of parallel lines;
2. If x01 = p/q, with p, q ∈ Z relatively prime, then there exist k, l ∈ Z such

that kp+ lq = 1, so 1
q
= k

(

p
q

)

+ l, and
{

n1x
0
1 + k;n1, k ∈ Z

}

is the set of

all integer multiples of 1
q
. Hence SΣ is a simple lattice, containing x0, with

basis (1, 0), (0, 1/q).

5 Conclusion

The purpose of the paper was to lay out the apparatus needed to construct
low-dimensional discrete crystal structures associated with continua that have
non-constant dislocation density tensor systematically, and to illustrate the
construction in what appears to be the simplest non-trivial case. We intend to
catalogue other low-dimensional discrete structures in future work, and will try
to correlate the results obtained with those that feature in current applications
(quasicrystals, graphene ...) with a view to analysing corresponding variational
problems, to begin with.
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