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A classification of the symmetries of uniform discrete defective

crystals

Rachel Nicks

Abstract

Crystals which have a uniform distribution of defects are endowed with a Lie group

description which allows one to construct an associated discrete structure. These structures

are in fact the discrete subgroups of the ambient Lie group. The geometrical symmetries

of these structures can be computed in terms of the changes of generators of the discrete

subgroup which preserve the discrete set of points. Here a classification of the symmetries

for the discrete subgroups of a particular class of three-dimensional solvable Lie group

is presented. It is a fact that there are only three mathematically distinct types of Lie

groups which model uniform defective crystals, and the calculations given here complete the

discussion of the symmetries of the corresponding discrete structures. We show that those

symmetries corresponding to automorphisms of the discrete subgroups extend uniquely to

symmetries of the ambient Lie group and we regard these symmetries as (restrictions of)

elastic deformations of the continuous defective crystal. Other symmetries of the discrete

structures are classified as ‘inelastic’ symmetries.

1 Introduction

In this paper it will be shown how the generalisation of symmetry properties of perfect solid

crystals to crystals with certain uniform distributions of defects leads to a classification of the

symmetries of discrete defective crystals as elastic or inelastic. We show that, in contrast with

the perfect crystal case, some of the symmetries of a discrete defective crystal do not extend

uniquely to a symmetry of the continuum model of the defective crystal. This allows us to

classify the symmetries which don’t extend as inelastic symmetries of the discrete defective

crystal, while those which do extend uniquely are restrictions of elastic deformations of the

continuous crystal and we call these symmetries elastic symmetries of the discrete crystal.

A starting point for the study of the mechanics of perfect solid crystals is to consider the

geometrical symmetries of perfect lattices in R3:

L = {x ∈ R3 : x = naℓa, na ∈ Z, a = 1, 2, 3}, (1.1)

where ℓ1, ℓ2, ℓ3 ∈ R3 are defining basis vectors and the summation convention operates on

repeated indices. The perfect lattice L defines a discrete set of points in R3 and can also

be thought of as a discrete subgroup of the continuous Lie group R3 with addition as group

composition. The discrete structures L in R3 have geometrical symmetries φ : L→ L given by

φ(ℓa) = γabℓb where γ = (γab) ∈ GL3(Z). (1.2)
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The symmetries of L are bijective and preserve addition as well as the set of points in R3 defined

by L. Moreover, every symmetry φ of a perfect lattice L extends uniquely to a bijection of R3.

Here we extend and generalise these properties of the symmetries of perfect crystals to a

certain class of defective crystal where the distribution of defects is uniform. We use Davini’s

continuum model of defective crystals [7], in which the dislocation density tensor S = (Sab),

a, b = 1, 2, 3, is defined by

Sab =
∇∧ da · db
d1 · d2 ∧ d3

, (1.3)

where the fields d1(·),d2(·),d3(·) are dual to the smooth lattice vector fields ℓ1(·), ℓ2(·), ℓ3(·),
which represent the crystal geometry in a region Ω. A crystal with a uniform distribution of

defects has dislocation density tensor which is constant in space. (Note that for perfect crystals

S ≡ 0.)

Suppose that {ℓ′a(·), a = 1, 2, 3} is a set of lattice vector fields which are elastically related

to ℓa(·) in the sense that there exists a smooth invertible mapping u : Ω → u(Ω) ≡ Ω′ such

that

ℓ′a (u(x)) = ∇u(x)ℓa(x), x ∈ Ω, a = 1, 2, 3. (1.4)

We say that u(·) is an elastic deformation. If S′
ab is calculated via the analogue of (1.3), using

fields dual to ℓ′a(·), a = 1, 2, 3, then

S′
ab (u (x)) = Sab(x), x ∈ Ω, a, b = 1, 2, 3. (1.5)

Therefore, each component Sab(·) of the dislocation density tensor is an ‘elastic’ scalar invariant

so that the value of the dislocation density is unchanged by elastic deformations of the crystal.

Due to this elastic invariance, for a given dislocation density tensor S there are infinitely many

choices of (elastically related) sets of corresponding lattice vector fields.

It is a commonly held idea in the elasticity theory of perfect crystals that there is a continuum

energy density w which depends on the underlying perfect lattice L; that is w = w({ℓa}) where
{ℓa} denotes the set of vectors {ℓ1, ℓ2, ℓ3}. If the basis vectors {ℓ′a} generate the same lattice

L (i.e. ℓ′a = φ(ℓa) in (1.2)) then

w({ℓa}) = w({ℓ′a}). (1.6)

In other words the geometrical symmetries of L correspond to the material symmetries of the

energy density function w. Here we use a generalisation of this theory which accounts for the

presence of a continuous distribution of defects in the crystal. It is assumed that the strain

energy density per unit volume in such a crystal depends on the values of the lattice vector

fields ℓ1(·), ℓ2(·), ℓ3(·) and dislocation density tensor S(·) at some point in Ω. Thus

w = w({ℓa}, S) (1.7)

where {ℓa} denotes the set of vectors {ℓ1, ℓ2, ℓ3} which are the values of the lattice vector fields

at some point in Ω, and S denotes the dislocation density tensor evaluated at the same point.
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As we shall see in section 2, the arguments of the energy density function determine a structure

D which under certain conditions will be a discrete set of points. If another set of arguments,

say ({ℓ′a}, S′), determine the same discrete structure then it is assumed that

w({ℓa}, S) = w({ℓ′a}, S′). (1.8)

Hence for crystals with defects we are associating that the symmetries of the energy density

function with the geometrical symmetries of the structure D. Therefore the structure D is

taken to be the defective crystal analogue of the perfect lattice L underlying perfect crystals,

and it is a central task to determine the geometrical symmetries of D.

Notice that the arguments ({ℓa}, S) of w give no information regarding gradients of S, and

we shall assume that they are zero. Therefore the dislocation density tensor S is constant in

space and the crystal has a uniform distribution of defects. It is this assumption that endows

the crystal with a Lie group structure. Suppose that the vector fields ℓ1(·), ℓ2(·), ℓ3(·), defined
here and henceforth on Ω ≡ R3, give constant S. Then according to Pontryagin [24], the system

of partial differential equations

ℓa(ψ(x,y)) = ∇1ψ(x,y)ℓa(x), a = 1, 2, 3, (1.9)

has a solution for the function ψ, where ∇1ψ(·, ·) denotes the gradient of ψ with respect to its

first argument. Moreover, the function ψ : R3×R3 → R3 can be taken to satisfy the properties

required for it to be a Lie group composition function on R3, i.e.

ψ(0,x) = ψ(x,0) = x, (1.10)

ψ(x,x−1) = ψ(x−1,x) = 0 (1.11)

ψ(ψ(x,y),z) = ψ(x,ψ(y,z)), (1.12)

where 0 is the group identity element and x−1 is the unique inverse of the element x [24, 19].

Here, the Lie group G = (R3,ψ) has underlying manifold R3 so that an element x ∈ G can be

uniquely specified by x = xiei where xi ∈ R and {e1,e2,e3} is a basis of R3. We will often use

the alternative notation ψ(x,y) ≡ xy. (Note that in the perfect crystal case where S ≡ 0, we

can take ψ to be addition so that G = (R3,+).)

Relation (1.9) expresses the right invariance of the fields {ℓa(·)} with respect to the Lie

group G = (R3,ψ). Suppose that the fields {ℓ′a(·)} are elastically related to {ℓa(·)} via u(·) as
in (1.4). Then if ψ′ : R3 × R3 → R3 is defined by

ψ′(r, s) = u(ψ(u−1(r),u−1(s))),

then

ℓ′a
(
ψ′(r, s)

)
= ∇1ψ

′(r, s)ℓ′a(r), r, s ∈ R3, a = 1, 2, 3.

Hence the fields {ℓ′a(·)} are right invariant with respect to the Lie group G′ = (R3,ψ′) and

since u is invertible, the groups G and G′ are isomorphic. Thus, elastically related crystal

states have isomorphic corresponding Lie groups.
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Recall that the dislocation density tensor S is an elastic invariant so there is an infinite

choice of elastically related lattice vector fields which have duals which satisfy (1.3) for a given

constant dislocation density. Therefore, there is also an infinite number of choices of isomorphic

Lie groups G = (R3,ψ) corresponding to S. Hence a given constant S determines up to Lie

group isomorphism a Lie group G. In this paper we make a ‘canonical’ choice of the Lie group

G to simplify the computations. We identify material points of the crystal with elements of the

Lie group.

When G has a uniform discrete subgroup D (where D ⊂ G is uniform if the left coset space

G/D is compact) the material points corresponding to the elements in D have a minimum sep-

aration distance and form discrete geometrical structures which we take to the defective crystal

analogue of the perfect lattice L. The requirement that G/D be compact is a generalisation of

the fact that in the perfect crystal case that R3/L (the unit cell of the lattice L with appropriate

identification of boundary points) is compact.

According to Auslander, Green and Hahn [1] there are precisely three classes of non-Abelian,

three dimensional Lie groups G with uniform discrete subgroups. These are a certain class

of nilpotent Lie groups and two non-isomorphic classes of solvable Lie groups. For each of

these cases we are interested in the form of the geometrical structures corresponding to the

discrete subgroups D and the geometrical symmetries of these structures (i.e. the changes of

generators of D which preserve the points in the geometrical structure). These have already

been determined in all three cases:

• When the Lie group G is nilpotent (with corresponding Lie algebra with rational structure

constants), Cermelli and Parry [4] have shown that the corresponding discrete subgroups

give either a simple lattice or a 4-lattice (in Pitteri and Zanzotto’s terminology [23]) even

though the composition function in G is not additive. For such groups, Parry and Sigrist

[22] construct explicitly all sets of generators of a given discrete subgroup. The formulae

that connect different sets of generators generalise the perfect crystal case given by (1.2).

• Auslander et al. [1] call the two classes of solvable groups S1 and S2. It has been shown

by Parry and Nicks that in both cases the geometrical structures corresponding to the

discrete subgroups of these solvable groups are simple lattices. The changes of generators

preserving these structures were also determined (see [16] for the S1 case and [17] for the

S2 case).

In this paper we focus on a property of the symmetries of perfect lattices which does not

hold in the generalisation to the symmetries of discrete structures underlying crystals with

uniform distributions of defects. Recall that the geometrical symmetries of a perfect lattice L

are bijections φ : L→ L as in (1.2) which preserve addition. Each of these symmetries extends

uniquely to a bijection φ̃ : R3 → R3 defined by

φ̃(xaℓa) = xa(φ̃(ℓa)) = xaφ(ℓa), xa ∈ R, a = 1, 2, 3.

Thus every symmetry of L represents a (restriction of an) elastic deformation of the continuum

perfect crystal.
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This is not the case for crystals with constant S 6= 0 where the underlying Lie group,

G = (R3,ψ), is solvable or nilpotent. In these cases there is a difference between the set of

all geometrical symmetries of a discrete structure D ⊂ G and the subset of these symmetries

which preserve the group structure of D and extend uniquely to elastic deformations of R3.

This allows us to classify the symmetries of the discrete structures D which preserve the group

structure as elastic or inelastic depending on whether or not they are restrictions of elastic

deformations of the continuum defective crystal. The observation that such a classification can

be made is interesting because it indicates a possible link between the inelastic symmetries of

the discrete crystal D (which preserve the elastic invariant S and the discrete structure) and

observed inelastic processes in crystal behaviour such as slip in particular planes and directions

determined by geometry.

Notice that we consider here only symmetries of discrete structures D which additionally

preserve the group structure. We do not discuss here symmetries where the discrete structure

represents discrete subgroups of different Lie groups, isomorphic or not.

Our simplified task then is to identify which of the geometrical symmetries of discrete

subgroupsD ⊂ G extend uniquely to elastic deformations of R3. This task breaks down into two

stages. First we must determine which of the geometrical symmetries of D preserve the group

structure of D; that is which of the symmetries will extend to automorphisms of D. Secondly

we need to determine if these automorphisms of D extend uniquely to automorphisms of the

ambient Lie group G. For a geometrical symmetry of D to be classified as an elastic symmetry

it must extend to an automorphism of D and that automorphism must extend uniquely to

an automorphism of G, since these are requirements that must be satisfied in order that the

geometrical symmetry is a restriction of an elastic deformation of the defective crystal.

In the cases where the structure D is a discrete subgroup of a nilpotent Lie group or a

solvable Lie group in the class S1 such a classification of the geometrical symmetries of D has

been carried out. The automorphisms of the discrete subgroups D have been computed (see

[21] for the nilpotent case and [18] for the S1 case) and it has been observed that theorems of

Mal’cev [15] and Gorbatsevich [10] guarantee that every automorphism of D extends uniquely

to an automorphism of the ambient Lie group G. In this paper we will complete the analysis by

classifying the geometrical symmetries of discrete subgroups D of solvable groups in the class

S2. In this case we must work a little harder since although it remains relatively straightforward

to compute which of the geometrical symmetries of D correspond to automorphisms of D, there

is no analogue of the theorems of Mal’cev and Gorbatsevich for solvable groups of this class.

Therefore we must determine directly whether or not automorphisms of D extend uniquely to

automorphisms of S2. The difficulties arise for the S2 class due to the fact that the exponential

mapping from the corresponding Lie algebra s2 to S2 is not one-to-one.

We begin by recalling how to construct discrete structures D corresponding to a particular

set of arguments ({ℓa}, S) of the energy density function w. These are discrete subgroups of Lie

groups G and we will also recall elements of Lie group theory that will be required in this paper,

including facts about Lie group isomorphisms. In section 3, following Auslander et al. [1] and

Nicks and Parry [17] we introduce the group S2 and the canonical group in the isomorphism

class which we will work with. We also introduce the Lie algebra s2 of the Lie group S2 and
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calculate the automorphisms of S2. In section 4 we discuss the discrete subgroups D of S2,

recalling results from Nicks and Parry [17] concerning their geometrical symmetries. We next

compute the automorphisms of these discrete subgroups D which amounts to determining the

matrices χ ∈ GL2(Z) which commute with a given matrix θ ∈ SL2(Z) which is related to

the dislocation density. This is a number theoretic problem studied by Baake and Roberts

[2] and here we summarize their results which are relevant to this work. Finally in section

6 we demonstrate explicitly that each of these automorphisms of D extends uniquely to an

automorphism of S2.

2 Elements of Lie group theory and discrete defective crystals

Suppose that we are given a set of arguments of an energy density function for a crystal with

a uniform distribution of defects. That is, we are given ({ℓa}, S) where S is some value of the

dislocation density tensor and the (linearly independent) vectors ℓa, a = 1, 2, 3 are values of

some lattice vector fields ℓa(·) evaluated at some point, say 0, in R3 such that their duals satisfy

(1.3). Furthermore (since we assume the crystal is uniform) the fields ℓa(·) also satisfy (1.9) for

some group composition function ψ on R3. The following survey of facts about the Lie group

G = (R3,ψ) follows that given in [16], [17], [18], [21], [22] and is given here for completeness.

The reader who is familiar with this background material may omit section 2 and focus on the

subsequent new material.

The Lie group G = (R3,ψ) has corresponding Lie algebra g which is the vector space R3

with the Lie bracket operation [·, ·] : R3 × R3 → R3 given by

[x,y] = Cijkxjykei, x,y ∈ R3, (2.1)

with respect to some basis {e1,e2,e3} of R3. Here, Cijk are the structure constants of the Lie

algebra and are related to the Lie group composition function ψ via

Cijk =
∂2ψi

∂xj∂yk
(0,0)− ∂2ψi

∂xk∂yj
(0,0), (2.2)

where ψ = ψi(x,y)ei. The connection between the dislocation density tensor S, defined via

(1.3), and the structure constants is

Cijkℓrj(0)ℓsk(0) = ǫprsSkpℓki(0), (2.3)

where ǫprs is the permutation symbol and ℓr(0) = ℓrj(0)ej , see Elzanowski and Parry [9].

In this paper we shall be concerned with the automorphisms of Lie groups G which are

of course isomorphisms of the Lie group to itself (preserving the group composition function).

These are related to the automorphisms of the corresponding Lie algebra g. Let g and g
′ be Lie

algebras with Lie brackets [·, ·]g, [·, ·]g′ respectively. A Lie algebra isomorphism is an invertible

linear transformation L : g → g
′ which satisfies

[Lx, Ly]g′ = L[x,y]g, x,y ∈ g. (2.4)
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If Cg

ijk, C
g
′

ijk are the structure constants for g,g′ respectively, then (2.1) implies that

Cg
′

ijkLjpLkq = LirC
g

rpq, (2.5)

where Lei = Ljiej , i = 1, 2, 3. Let G = (R3,ψG) and G′ = (R3,ψG′) be Lie groups with

corresponding Lie algebras g and g
′ respectively. A smooth invertible mapping u : G → G′ is

a Lie group isomorphism if

ψG′(u(x),u(y)) = u(ψG(x,y)), x,y ∈ G. (2.6)

It is a fact that if u : G → G′ is a Lie group isomorphism then ∇u(0) ≡ L is a Lie algebra

isomorphism from g to g
′. Conversely, if an invertible linear transformation L satisfies (2.4),

then it is a major result of Lie theory that there exists a unique Lie group isomorphism u such

that ∇u(0) = L (see [25]).

Let ν1, ν2, ν3 be given real numbers and define the right invariant vector field ν(·) = νaℓa(·).
Define the integral curve of ν(·) through x0 to be the solution {x(t) : t ∈ R} of the differential

equation ẋ(t) = νaℓa(x(t)), x(0) = x0. Note that ν := ν(0) determines the field ν(x) by the

right invariance of ν(·). One can then define the mapping exp(ν) : G→ G by

exp(ν)(x0) = x(1), (2.7)

and the group element e(ν) by

e(ν) = exp(ν)(0). (2.8)

Also, note that e(·) : g → G is called the exponential mapping of the Lie algebra to the Lie

group. It is standard result of Lie group theory that

exp(ν)(x) = ψ(e(ν),x), (2.9)

and this states that the flow along the integral curves of the lattice vector fields corresponds

to group multiplication by the group element e(ν). In the case of perfect crystals, choosing

ℓa(·) ≡ ℓa(0) ≡ ea for a basis {e1,e2,e3} of R3, iterating the flow along the lattice vector fields

(which in this case is just translation by e1,e2,e3) produces a perfect lattice. In the case of

G = (R3,ψ) the analogue of the perfect lattice is the set of points (or group elements) produced

by iterating the flow (from t = 0 to t = 1) along the lattice vector fields, starting at the origin.

By (2.7)–(2.9) one obtains the subgroup of G that is generated by the group elements e(e1),

e(e2), e(e3) where ea = ℓa(0), a = 1, 2, 3.

We will be interested in the automorphisms of both G and its subgroupD generated by e(e1),

e(e2), e(e3) whenever this is a uniform discrete subgroup. The method we will use to compute

the automorphisms of G makes use of the fact that the diagram in Figure 1 commutes so that

φ(e(ν)) = e(∇φ(0)ν), ν ∈ g, (2.10)

and also the fact that the automorphisms of the corresponding Lie algebra g can be computed

using the fact that they must satisfy (2.5) with g
′ = g.
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Figure 1: Commutative diagram for Lie algebra and Lie group automorphisms

3 Solvable Lie groups and their automorphisms

Recall that in this paper we shall be completing the classification of symmetries of discrete

structures associated with crystals with uniform distributions of defects. As we have seen

in section 2, the discrete structures are uniform discrete subgroups D of three-dimensional

Lie groups G = (R3,ψ). According to Auslander et al [1], there are only three classes of

non-abelian, connected, simply connected, three-dimensional Lie groups G = (R3,ψ) which

have such uniform discrete subgroups. These are a class of nilpotent Lie group and two non-

isomorphic classes of solvable Lie group which they call S1 and S2. The symmetries of the

discrete subgroups of the nilpotent Lie groups and the solvable groups in the class S1 have

already been computed and classified. Here we complete the analysis by considering the S2
case. We begin with the relevant definitions.

3.1 Solvable Lie groups

Let g be a Lie algebra with corresponding connected Lie group G. Define the following sequence

of subalgebras:

g1 = g, g2 = [g1, g1] , . . . , gk = [gk−1, gk−1] .

The Lie algebra g is solvable if gk = 0 for some integer k. Let (x,y) = x−1y−1xy denote the

commutator of x,y ∈ G where group multiplication is represented as juxtaposition. Then let

(G,G) denote the commutator (or derived) subgroup of G generated by all commutators of

elements of G. If one defines

G1 = G, G2 = (G1, G1), G3 = (G2, G2), . . . , Gk = (Gk−1, Gk−1),

the G is solvable if Gk = 0 for some integer k. The Lie algebra of Gk is gk and G is solvable if

and only if g is solvable.

In solvable groups of dimension three we have G3 = 0 so that all commutators of elements

of G commute with each other. Furthermore, it can be shown that there are basis vectors f1,

f2, f3 of R3 such that

[f1,f2] = 0, [f1,f 3] = αf 1 + βf2, [f2,f3] = γf1 + δf 2, (3.1)

where α, β, γ, δ ∈ R and αδ − βγ 6= 0.

8



3.2 The solvable Lie group S2

We shall be concerned with the three-dimensional solvable Lie group S2 which has correspond-

ing Lie algebra which we shall denote s2. We now define this group and give the form of

corresponding dislocation density tensor. Further details regarding derivation of facts about

this group or the related group S1 can be found in Nicks and Parry [17] and Nicks and Parry

[16] respectively. We identify group elements with points x ∈ R3, representing them as x = xiei
with respect to some basis {e1,e2,e3} of R3. Auslander et al [1] choose to represent the elements

as 4 × 4 matrices (still parameterised by x1, x2, x3) and these matrix representations form an

isomorphic group Sm where the matrix representation of x ∈ S2 is rm(x) ∈ Sm, defined by

rm(x) ≡




φ(x3)

0 0

0 0

0 x1
0 x2
1 x3
0 1


 , x ≡




x1
x2
x3


 ∈ R3, φ(x3) =

(
a(x3) b(x3)

c(x3) d(x3)

)
. (3.2)

In (3.2), φ(x3) ∈ SL2(R), φ(1) ∈ SL2(Z) and {φ(x3) : x3 ∈ R} is a one parameter subgroup of

the unimodular group. This implies that

φ(x)φ(y) = φ(x+ y), x, y,∈ R, (3.3)

and hence φ(0) = I2, the 2× 2 identity matrix. The one parameter subgroups of SL2(R) which

have φ(1) ∈ SL2(Z) fall into two classes depending on the eigenvalues of φ(1). Let us define

φ(1) ≡ θ =

(
a(1) b(1)

c(1) d(1)

)
=

(
a b

c d

)
, a, b, c, d ∈ Z, ad− bc = 1. (3.4)

The eigenvalues, λ, of θ are roots of the characteristic polynomial P (λ) = λ2 − tr(θ)λ+ 1, and

are therefore given by λ, 1/λ where λ = 1
2(tr(θ) +

√
tr(θ)2 − 4). If tr(θ) ∈ {−2,−1, 0, 1} then

the eigenvalues of θ are a complex conjugate pair and the group of matrices of the form rm(x)

is isomorphic to S2. Moreover, if tr(θ) = −2 then θ ≡ −I2. If tr(θ) > 2 then the eigenvalues

of θ are positive, real and distinct and the group of matrices of the form rm(x) is isomorphic

to the class of solvable group S1 which has been considered previously (see Nicks and Parry

[18]). If tr(θ) = 2 then the group of matrices of the form rm(x) is isomorphic to a nilpotent

Lie group. For other values of tr(θ), θ cannot lie on a one parameter subgroup of SL2(R) (see

Auslander et al. [1]).

Differentiating (3.3) with respect to y and evaluating at y = 0, and also doing the same for

x, we see that the one parameter subgroup φ(x) of SL2(R) satisfies

φ′(x) = φ(x)φ′(0) = φ′(0)φ(x),

where ′ denotes d
dx
. We also define

φ′(0) = A =

(
a′(0) b′(0)

c′(0) d′(0)

)
,

so that we have

φ(x) = eAx =

∞∑

j=0

Aj x
j

j!
.
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Since φ(x) ∈ SL2(R), we have a(x)d(x) − b(x)c(x) = 1 and differentiating this relation with

respect to x and setting x = 0 we see that tr(A) = 0 since φ(0) = I2. Hence A2 = − det(A)I2
and any matrix satisfying this condition has matrix exponential satisfying

eA =





(cosh k)I2 +
(
sinhk

k

)
A, if det(A) < 0, k ≡

√
− det(A);

(cos k)I2 +
(
sink
k

)
A, if det(A) > 0, k ≡

√
det(A);

I2 +A, if det(A) = 0.

(3.5)

Since tr(A) = 0 we have

a+ d = tr eA =





2 cosh k, if det(A) < 0;

2 cos k, if det(A) > 0;

2, if det(A) = 0,

(3.6)

where k =
√
|det(A)|. Recall that we are interested in the case where Sm is isomorphic to S2

where a+ d ∈ {−2,−1, 0, 1}. In that case det(A) > 0 and

φ(x) = eAx = (cos kx)I2 +

(
sin kx

k

)
A, (3.7)

where

k =





πn n = ±1 mod 2 when a+ d = −2
2πn
3 n = ±1 mod 3 when a+ d = −1

πn
2 n = ±1 mod 4 when a+ d = 0
πn
3 n = ±1 mod 6 when a+ d = 1.

(3.8)

When a + d = −2 so that θ = −I2, A is any traceless 2 × 2 matrix with determinant

k2 = n2π2, n an odd integer. If a+ d ∈ {−1, 0, 1} then

θ =

(
a b

c d

)
=

1

2
(a+ d)I2 +

(
sin k

k

)
A

which implies that

A =

(
k

sin k

)(
1
2 (a− d) b

c −1
2(a− d)

)
. (3.9)

Note that in the cases where a + d ∈ {−1, 0, 1} the integers b and c in A and θ are nonzero,

since if either were zero then it must be the case that ad = 1 and hence a = d = ±1, implying

that a+ d = ±2.

Noting that the mapping rm : S2 → Sm given by (3.2) is one to one and that matrix

multiplication is the group composition function in the matrix group Sm, it follows that the

group composition function ψ in S2 satisfies

rm(ψ(x,y)) = rm(x)rm(y),
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and hence

ψ(x,y) = x+ (a(x3)y1 + b(x3)y2)e1 + (c(x3)y1 + d(x3)y2)e2 + y3e3. (3.10)

For a given a group composition function ψ it is easy to see that ℓa(x) = ∇1ψ(0,x)ea,

a = 1, 2, 3, is a set of lattice vector fields which is right invariant with respect to the group

(R3,ψ); that is (1.9) is satisfied where ℓa(0) = ea. For our group composition function (3.10)

we have

ℓ1(x) = e1, ℓ2(x) = e2, ℓ3(x) = (a′(0)x1 + b′(0)x2)e1 + (c′(0)x1 − a′(0)x2)e2 + e3,

recalling that d′(0) = −a′(0). Using the duals of these vector fields we then compute using

(1.3) that the components of the dislocation density tensor are

S =




−b′(0) a′(0) 0

a′(0) c′(0) 0

0 0 0


 . (3.11)

In particular the dislocation density tensor is rank 2, symmetric and uniquely determined by

the matrix A. Also note that the correspondence between the 2× 2 matrices A and θ = eA is

infinitely many to one since θ determines tr(θ) = a+ d = 2cos k where k may take a countable

infinity of values.

3.3 The solvable Lie algebra s2 and its automorphisms

From the group composition function ψ in S2 given by (3.10) one can calculate using (2.1) that

the Lie bracket on s2 (the Lie algebra of S2) is given by

[x,y] = (a′(0)x ∧ y · e2 − b′(0)x ∧ y · e1)e1 + (c′(0)x ∧ y · e2 + a′(0)x ∧ y · e1)e2, (3.12)

for x = xiei, y = yiei ∈ R3. In particular

[e1,e2] = 0, [e1,e3] = −a′(0)e1 − c′(0)e2, [e2,e3] = −b′(0)e1 + a′(0)e2,

so that it is clear from (3.1) that s2 is solvable since det(A) 6= 0.

We now want to compute the automorphisms of this Lie algebra. It turns out that these

computations are much simplified if we make a change of basis in the Lie algebra. Suppose

that we are given a particular value of θ with tr(θ) ∈ {−1, 0, 1} or θ = −I2 and make a choice

of corresponding k (c.f. (3.8)). Consider the basis {f1,f2,f3} where f i =Mijej for

M =




−b′(0) a′(0) + k 0

−b′(0) a′(0) − k 0

0 0 1


 . (3.13)

Note that b′(0) 6= 0 for tr(θ) ∈ {−1, 0, 1} by the remark following (3.9) and if b′(0) = 0

when tr(θ) = −2 then det(A) = −(a′(0))2 < 0 since a′(0) ∈ R but this contradicts the
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fact that det(A) = k2 > 0. Thus the change of basis matrix M is invertible since it has

det(M) = 2b′(0)k 6= 0.

The basis {f1,f2,f3} satisfies

[f1,f2] = 0, [f1,f3] = kf2, [f2,f3] = −kf1.

Furthermore, with respect to this basis the structure constants of s2 are given by

Cijk = k(δ3jǫ3ik − δ3kǫ3ij), (3.14)

and using (2.5) with g = g
′ = s2 one computes that a linear transformation L is an automor-

phism of s2 with respect to the basis {f1,f2,f3} if L has the form (c.f. [11])

L =




0 1 0

1 0 0

0 0 −1




ǫ


α β γ

−β α δ

0 0 1


 , (3.15)

where ǫ ∈ {0, 1}, α, β, γ, δ ∈ R such that α2 + β2 6= 0. With respect to the basis {e1,e2,e3},
the automorphisms of s2 are given by MTLM−T where T denotes transpose.

3.4 Automorphisms of S2

Here we discuss how to compute the group automorphisms of S2. As previously discussed we

shall use relation (2.10) to compute these using our knowledge of the Lie algebra automorphisms

of s2. This computation is not as straight forward as it may appear at first glance, due to the

fact that the exponential mapping e(·) : s2 → S2 is not surjective. Again we work with respect

to the basis {f1,f2,f3} for ease of computation. We begin by giving details of the required

functions and mappings with respect to the basis {f1,f2,f3}.

When changing basis from {e1,e2,e3} to {f 1,f2,f3}, the matrix A changes to B =
(

0 k
−k 0

)

and, with respect to the basis {f1,f2,f 3},

φ(u) = eBu =

(
cos ku sin ku

− sin ku cos ku

)
. (3.16)

Thus with respect to the basis {f1,f2,f3} the Lie group composition function in S2 is given

by

ψ(u,v) = u+ (v1 cos ku3 + v2 sin ku3)f1 + (−v1 sin ku3 + v2 cos ku3)f 2 + v3f3

where u = uif i, v = vif i. Computing the lattice vector fields ∇1ψ(0,u)fa one can then use

(2.8) to find that the exponential mapping e(·) : s2 → S2 with respect to the basis {f1,f2,f3}
is given by

e(u) =


 F (Bu3)

(
u1
u2

)

u3


 where u = uif i = (u1, u2, u3)

T , (3.17)
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and for u3 6= 0

F (Bu3) =

∞∑

j=0

(Bu3)j
(j + 1)!

=

(
sin ku3
ku3

)
I2 +

(
1− cos ku3

(ku3)2

)
Bu3

=
1

ku3

(
sin ku3 1− cos ku3

−(1− cos ku3) sin ku3

)
. (3.18)

For u3 = 0, F (Bu3) = I2.

Note that if ku3 = 2πn for some n ∈ Z\{0} then F (Bu3) = 0, the 2 × 2 zero matrix,

and e(u) = (0, 0, u3)
T for any values of u1 and u2 ∈ R. Therefore e(·) : s2 → S2 is not a

homeomorphism - it is not surjective because it is not possible to write every element v ∈ S2
as v = e(u) for some u ∈ s2. Hence the exponential mapping e(·) : s2 → S2 does not have a well

defined inverse.

However, one can verify that any v = vif i ∈ S2 may be written as the group composition

of two exponentials:

v = ψ(e(s), e(t)) where s = v1f1 + v2f2, t = v3f3. (3.19)

Recall that there is a one to one correspondence between the Lie algebra automorphisms L :

s2 → s2 and the Lie group automorphisms φ : S2 → S2 given by L ≡ ∇φ(0). Also the Lie

group and algebra automorphisms satisfy (2.10). We now use this relation to compute the Lie

group automorphisms φ : S2 → S2. Suppose that L : s2 → s2 is a Lie algebra automorphism

and hence has the form (3.15), and let v ∈ S2. Then v can be written as in (3.19) so that Lie

group automorphisms φ : S2 → S2 satisfy

φ(v) = φ(ψ(e(s), e(t))) = ψ(φ(e(s)),φ(e(t))) = ψ(e(Ls), e(Lt)),

where s and t are as in (3.19). Hence e(Ls) = Ls and

e(Lt) =


 F (Bξv3)W (ǫ)

(
γ

δ

)
v3

ξv3


 , where W (ǫ) =

(
0 1

1 0

)ǫ

, ξ = (−1)ǫ,

so that automorphisms of S2 with respect to the basis {f1,f2,f3} are given by

φ(v) =


 W (ǫ)

(
α β

−β α

)(
v1
v2

)
+ F (Bξv3)W (ǫ)

(
γ

δ

)
v3

ξv3


 (3.20)

=








αv1 + βv2 +
γ
k
sin kv3 +

δ
k
(1− cos kv3)

−βv1 + αv2 − γ
k
(1− cos kv3) +

δ
k
sin kv3

v3


 when ǫ = 0,




−βv1 + αv2 − γ
k
(1− cos kv3) +

δ
k
sin kv3

αv1 + βv2 +
γ
k
sin kv3 +

δ
k
(1− cos kv3)

−v3


 when ǫ = 1.
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3.5 The Lie groups Aut(s2) and Aut(S2)

The automorphisms of s2 and S2 as computed in previous sections form Lie groups Aut(s2)

and Aut(S2) respectively under composition of mappings. In this section we show that each

automorphism of s2 or S2 is a composition of automorphisms in various subgroups of Aut(s2)

or Aut(S2). Moreover, the groups Aut(s2) and Aut(S2) are isomorphic.

The elements of Aut(s2) with respect to the basis {f1,f2,f3} are

Aut(s2) =



L =




0 1 0

1 0 0

0 0 −1




ǫ


α β γ

−β α δ

0 0 1


, ǫ ∈ {0, 1}, α, β, γ, δ ∈ R, α2 + β2 6= 0.





(3.21)

Define the following subgroups of Aut(s2):

P :=



L ∈ Aut(s2) : L =




0 1 0

1 0 0

0 0 −1




ǫ

, ǫ ∈ {0, 1}





R :=



L ∈ Aut(s2) : L =




α β γ

−β α δ

0 0 1


 , α, β, γ, δ ∈ R, α2 + β2 6= 0



 .

Then, noting that R is normal in Aut(s2) and Aut(s2) = PR, if L ∈ Aut(s2) then L can be

written uniquely as a product of an element of P and an element of R. Also define the following

subgroups of R:

S :=



L ∈ Aut(s2) : L =




α β 0

−β α 0

0 0 1


 , α, β ∈ R, α2 + β2 6= 0



 ,

T :=



L ∈ Aut(s2) : L =




1 0 γ

0 1 δ

0 0 1


 , γ, δ ∈ R



 .

Then S is normal in R and R = TS so that any L ∈ Aut(s2) can be uniquely written as a

product of an element of P , an element of T and an element of S or Aut(s2) = PTS.

There is a one to one correspondence between the automorphisms of s2 and the auto-

morphisms of S2, in fact there is an isomorphism µ : Aut(s2) → Aut(S2), and the Lie

group automorphism µ(L) = φL corresponding to the Lie algebra automorphism L = pts,

p ∈ P, t ∈ T, s ∈ S, can be uniquely decomposed as

µ(L) = µ(p) ◦ µ(t) ◦ µ(s)

where µ(p) ∈ µ(P ) and µ(P ) is a subgroup of Aut(S2), and so on.
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4 Discrete subgroups of S2 and their symmetries

Recall that in this paper we are investigating whether or not automorphisms of discrete sub-

groups of the Lie group S2 extend to automorphisms of the continuous Lie group. The

automorphisms of a discrete subgroup D correspond to a certain subset of the geometrical

symmetries of D, where the geometrical symmetries of D are the changes of generators that

preserve the set of points in D. In this section we introduce the discrete subgroups D of S2
and recall from Nicks and Parry [16]–[18] how different sets of generators of D are related to

each other, thus determining the geometrical symmetries of D.

4.1 The discrete subgroups of S2

According to Auslander, Green and Hahn [1], when θ ∈ SL2(Z) has tr(θ) ∈ {−2,−1, 0, 1} the

discrete subgroups D ⊂ S2 are isomorphic (via rm(·) defined in (3.2)) to a discrete subgroup

Dm of Sm and Dm is generated by three elements

A ≡ rm(e3) =




θ

0 0

0 0

0 0

0 0

1 1

0 1


 , B ≡ rm(e1) =




1 0 0 1

0 1 0 0

0 0 1 0

0 0 0 1


 , C ≡ rm(e2) =




1 0 0 0

0 1 0 1

0 0 1 0

0 0 0 1


 .

(4.1)

Note that here we are again working with respect to the basis {e1,e2,e3}. Let (X,Y ) =

X−1Y −1XY denote the commutator of elements X, Y ∈ Sm where juxtaposition denotes

matrix multiplication. We then note that

(A,B) = B1−dCc, (A,C) = BbC1−a, (B,C) = I4, (4.2)

where I4 is the identity element in Dm. From this one can see that any element of Dm can be

expressed as a product of the form

dm = Aα1Bβ1Cγ1Aα2Bβ2Cγ2 . . . AαrBβrCγr = Aα1+···αrBMCN

for some M,N ∈ Z where αi, βi, γi ∈ Z, i = 1, 2, . . . , r and r ∈ Z. A general element dm =

AQBMCN ∈ Dm, Q,M,N ∈ Z has the representation

dm =




θQ

0 0

0 0

0

0
θQ

(
M

N

)

1 Q

0 1


 = rm(x), where x =


 θQ

(
M

N

)

Q


 ∈ S2, (4.3)

with respect to the basis {e1,e2,e3}.

It is then clear that since θ ∈ SL2(Z), r
−1
m (Dm) = D = (Z3,ψ). Thus the discrete

structures which are the analogues of perfect lattices L in this case are the lattice Z3 with

group multiplication ψ given by (3.10).
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4.2 Symmetries of D

The symmetries of the discrete subgroupD ⊂ S2 are the choices of three elements g1,g2,g3 ∈ D

such that the subgroup of D generated by the three elements (which we shall denote G =

gp{g1,g2,g3}) is in fact equal to D. These changes of generators preserve the integer lattice Z3.

For the discrete subgroups of S2, the conditions on g1,g2,g3 that are necessary and sufficient

that G = D can be shown to be precisely the conditions that are necessary and sufficient for

the commutator subgroups G′ = (G,G) and D′ = (D,D) to be equal (see Nicks and Parry

[17]). In this section we state these conditions without proof. Proofs of the statements below

can be found in [17] or [18].

Let g1,g2,g3 be elements of D. That is, gim := rm(gi) is a word in the generators A,B,C

of Dm and we can use the commutator relations (4.2) to write

g1m = Aα1Bβ1Cγ1 ,

g2m = Aα2Bβ2Cγ2 , αi, βi, γi ∈ Z, i = 1, 2, 3.

g3m = Aα3Bβ3Cγ3 ,

(4.4)

If G = gp{g1,g2,g3} = D then clearly we must have

Gm = gp{g1m,g2m,g3m} = Dm.

Since A ∈ Dm it must also be the case that A ∈ Gm if we are to have G = D. Due to the

particular form of the commutator relations (4.2) for the generators A,B,C of Dm this implies

that hcf(α1, α2, α3) = 1. In that case, the following lemma holds.

Lemma 1. Let g1m,g2m,g3m be given by (4.4), let Gm = gp(g1m,g2m,g3m) and suppose that

hcf(α1, α2, α3) = 1. Then there is a set of generators of Gm, denoted g′1m,g
′
2m,g

′
3m, such that

g′1m = ABβ′

1Cγ′

1 , g′2m = Bβ′

2Cγ′

2 , g′3m = Bβ′

3Cγ′

3 , β′i, γ
′
i ∈ Z, i = 1, 2, 3. (4.5)

See Nicks and Parry [18] for the proof of this lemma. It is then shown in Nicks and Parry

[16] that if one defines τ 1, τ 2, τ 3, τ 4 ∈ Z2 by

τ 1 =

(
β′2
γ′2

)
, τ 2 =

(
β′3
γ′3

)
, τ 3 = θ

(
β′2
γ′2

)
, τ 4 = θ

(
β′3
γ′3

)
; (4.6)

where the values of β′2, β
′
3, γ

′
2, γ

′
3 are as in (4.5), then conditions necessary and sufficient that

G = D are that

hcf (τ11, τ12, τ13, τ14) = hcf (τ21, τ22, τ23, τ24) = 1 (4.7)

hcf ({τ i ∧ τ j ; i < j, i, j = 1, 2, 3, 4}) = 1, (4.8)

where the components of τ i, i = 1, 2, 3, 4, are
(
τ1i
τ2i

)
. From now on we will drop the primes on

the β′i, γ
′
i in the definitions of τ j , j = 1, 2, 3, 4.
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5 Automorphisms of discrete subgroups

In the previous section we gave details of the possible changes of generators of a discrete

subgroup D ⊂ S2. These are the symmetries of D. We now consider which of these symmetries

extend to automorphisms of the discrete subgroup D.

5.1 Changes of generators which extend to automorphisms of D

Here we state a result (Lemma 2) that gives necessary and sufficient conditions for a change of

generators of D to extend to an automorphism of D. The proof of the lemma is given in Nicks

and Parry [18], and follows from results of Johnson [12] and Magnus, Karrass and Solitar [14]

concerning free substitutions and automorphisms.

Let g1m,g2m,g3m ∈ Dm as in (4.4) satisfy the conditions stated in the previous section so

that they generate the group Dm (which is isomorphic to D). Recall that A,B,C given by

(4.1) also generate Dm. Thus A,B and C can each be written as a word in g1m,g2m,g3m and

their inverses. Moreover, the commutator relations (4.2) can be expressed as relations in terms

of the generators g1m,g2m,g3m. We define mutually inverse mappings φ, τ between the sets of

generators {A,B,C}, {g1m,g2m,g3m} by

φ(A) = g1m,

φ(B) = g2m,

φ(C) = g3m,

τ (g1m) = A,

τ (g2m) = B,

τ (g3m) = C,

(5.1)

and the following lemma holds.

Lemma 2. Let the mappings φ and τ be as defined in (5.1). These mappings extend to

mutually inverse automorphisms φ′, τ ′ of Dm if

(i) the commutator relations (4.2) continue to hold when A, B and C are replaced by φ(A),

φ(B) and φ(C) respectively; and

(ii) the relations in terms of the generators g1m,g2m,g3m obtained from the commutator re-

lations (4.2) continue to hold when g1m,g2m,g3m are replaced by τ (g1m), τ (g2m), τ (g3m)

respectively.

Conversely, if φ′ and τ ′ = (φ′)−1 are automorphisms of Dm then conditions (i) and (ii) hold,

and in addition the commutator relations (4.2) continue to hold when A, B and C are replaced

by (φ′)−1(A), (φ′)−1(B) and (φ′)−1(C) respectively.

See Nicks and Parry [18] for the proof of this lemma. We now use this result to compute

the automorphisms of Dm. Suppose that φ and τ are the changes of generators of Dm defined

in (5.1) and they satisfy the conditions in section 4.2. Furthermore, let

τ (A) = Ap1Bq1Cr1 , τ (B) = Ap2Bq2Cr2 , τ (C) = Ap3Bq3Cr3 (5.2)
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for pi, qi, ri ∈ Z, i = 1, 2, 3.

If φ is to extend to an automorphism φ′ of Dm then by Lemma 2 and the third commutator

relation of (4.2) the mapping must satisfy

(φ(B),φ(C)) = I4,

which expresses the fact that φ(B) and φ(C) must commute. This implies that we must have

α2 = α3 = 0 in (4.4). Similarly we deduce that p2 = p3 = 0 in (5.2) if τ extends to an

automorphism τ ′. Since φ′ and τ ′ are to be mutually inverse automorphisms τ ′ ◦ φ′ must be

the identity and therefore τ (φ(A)) = A, τ (φ(B)) = B, τ (φ(C)) = C, from which we deduce

that

α1 = p1 = ζ = ±1 and

(
q2 q3
r2 r3

)(
β2 β3
γ2 γ3

)
=

(
1 0

0 1

)
. (5.3)

Thus

χ :=

(
β2 β3
γ2 γ3

)
∈ GL2(Z), (5.4)

and
(
q2 q3
r2 r3

)
= χ−1. Finally, from the first two commutator relations of (4.2) we must have

(φ(A),φ(B)) = φ(B)1−dφ(C)c and (φ(A),φ(C)) = φ(B)bφ(C)1−a,

which can be shown to imply that the matrix χ defined in (5.4) must satisfy

θζχ = χθ for ζ = α1 = ±1, (5.5)

for the given matrix θ ∈ SL2(Z). Further details of these computations are given in Nicks and

Parry [18].

Recall that the discrete subgroupDm depends on a given matrix θ ∈ SL2(Z). The conditions

that a change of generators φ of Dm extends to an automorphism of Dm can be summarized

as

φ(A) = AζBβ1Cγ1 , φ(B) = Bβ2Cγ2 , φ(C) = Bβ3Cγ3 , (5.6)

where ζ = ±1, β1, γ1 are arbitrary integers and the matrix χ of the exponents βi, γi, i = 2, 3,

defined in (5.4), satisfies condition (5.5). These conditions are also sufficient that the conditions

of Lemma 2 hold. Hence it remains to determine the matrices χ satisfying (5.5).

5.2 Computing the automorphisms of D

By the results obtained in section 5.1, in order to determine the changes of generators φ which

extend to automorphisms of Dm it remains to compute the 2×2 matrices of exponents, denoted

χ above, that satisfy condition (5.5) for a given matrix θ ∈ SL2(Z). We now summarize here

the work of Baake and Roberts [2] on how to determine the matrices χ ∈ GL2(Z) satisfying

(5.5) for a given matrix θ ∈ SL2(Z) with tr(θ) ∈ {−2,−1, 0, 1}.
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As in [2], we define the set of symmetries of the matrix θ ∈ SL2(Z) as

S(θ) := {χ ∈ GL2(Z) : θχ = χθ}. (5.7)

This is a subgroup of GL2(Z) and is the centralizer of θ in GL2(Z). If χ ∈ GL2(Z) satisfies

χθχ−1 = θ−1 then we say that χ is a reversing symmetry of θ and when such a χ exists we call

θ reversible. We define the following subgroup of GL2(Z) as the reversing symmetry group of

θ,

R(θ) := {χ ∈ GL2(Z) : χθχ−1 = θ±1}. (5.8)

It is a subgroup of the normalizer of the group generated by θ in GL2(Z) and clearly S(θ) ⊂
R(θ). (If H ⊂ G, the normalizer of H in G is {a ∈ G : aH = Ha}). Moreover, S(θ) is a normal

subgroup of R(θ).

Given a matrix θ ∈ SL2(Z) with tr(θ) ∈ {−2,−1, 0, 1} we want to compute R(θ). As

observed earlier, when tr(θ) = −2, θ can only lie on a one-parameter subgroup of SL2(R) if

θ = −I2. Clearly, in this case R(θ) is GL2(Z). If tr(θ) ∈ {−1, 0, 1} then there are potentially

two possibilities

(i) R(θ) = S(θ). This occurs in cases where θ is not reversible;

(ii) The index of S(θ) in R(θ) is 2 so that R(θ) is a C2-extension of S(θ) (where C2 is the

cyclic group of order 2).

For a given matrix θ with tr(θ) ∈ {−1, 0, 1} there is a finite algorithm for computing R(θ)

which we briefly summarize following Baake and Roberts [2].

5.2.1 Computing S(θ)

Clearly ±θm ∈ S(θ) for all m ∈ Z and we can observe that

• if tr(θ) = −1 then θ3 = I2;

• if tr(θ) = 0 then θ4 = I2;

• and if tr(θ) = 1 then θ6 = I2.

Does S(θ) contain any other matrices χ?

When tr(θ) ∈ {−1, 0, 1} the eigenvalues of θ, λ and 1/λ, are distinct. Consequently θ can

be diagonalised by a matrix U which has entries in Q(λ), the smallest field extension of the

rationals that contains λ, so that

U−1θU =

(
λ 0

0 1
λ

)
where θ =

(
a b

c d

)
, U =

(
b b

λ− a 1
λ
− a

)
.
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Suppose that χ ∈ S(θ). Then U−1χU commutes with U−1θU and since only diagonal matrices

can commute with a diagonal matrix with different diagonal entries,

U−1χU =

(
µ1 0

0 µ2

)
, some µ1, µ2 ∈ Q(λ).

Thus S(θ) contains all matrices χ ∈ GL2(Z) which are diagonalised by U . Since χ ∈ GL2(Z),

it has eigenvalues µ1, µ2 which are algebraic integers. Also µ2 = ±µ−1
1 and hence µ1 and µ2

are units in O, the maximal order of Q(λ) (i.e the intersection of Q(λ) with the set of algebraic

integers). Thus S(θ) is isomorphic to a subgroup of the unit group of O.

• When tr(θ) = 0, Q(λ) = Q(
√
−1) and the unit group is isomorphic to {±I2,±θ}. Since

θ commutes with each of these matrices, S(θ) = {±I2,±θ} ≃ C4.

• When tr(θ) = ±1, Q(λ) = Q(
√
−3) and the unit group is isomorphic to {±I2,±θ,±θ2}.

Since θ commutes with each of these matrices, S(θ) = {±I2,±θ,±θ2} ≃ C6 (see [3], [5]).

In particular, when tr(θ) ∈ {−1, 0, 1} the group of matrices S(θ) which commute with θ is

finite.

5.2.2 Computing R(θ)

In order to compute R(θ) for a given matrix θ we need to determine the matrices Λ ∈ GL2(Z)

such that ΛθΛ−1 = θ−1. Recall that either R(θ) = S(θ) (if no such Λ exists) or R(θ) is a C2-

extension of S(θ). Also, if θ has a reversing symmetry Λ then all other reversing symmetries

of θ are obtained as Λχ where χ ∈ S(θ).

For any matrix θ ∈ SL2(Z), tr(θ) = tr(θ−1). Moreover it can be shown that when tr(θ) ∈
{−1, 0, 1}, θ is conjugate in GL2(Z) to

(
tr(θ) 1

−1 0

)
.

That is, there is only one conjugacy class of matrices for each value of tr(θ) ∈ {−1, 0, 1}
and hence θ ∈ SL2(Z) must be conjugate in GL2(Z) to its inverse. In other words, for any

θ ∈ SL2(Z) with tr(θ) ∈ {−1, 0, 1} there exists a matrix Λ ∈ GL2(Z) such that ΛθΛ−1 = θ−1.

Hence θ has a reversing symmetry Λ and R(θ) is a C2-extension of S(θ). This implies that

R(θ) =

{
D4 = {±I2,±θ,±Λ,±Λθ} if tr(θ) = 0

D6 = {±I2,±θ,±θ2 ± Λ,±Λθ,±Λθ2} if tr(θ) = ±1.

Notice that for matrices θ ∈ SL2(Z) with tr(θ) ∈ {−1, 0, 1} there is only a finite number of

symmetries and reversing symmetries of θ but the number of changes of generators φ which

extend to automorphisms of the corresponding discrete subgroup Dm is infinite due to the fact

that the choice of the exponents β1 and γ1 ∈ Z in (5.6) is arbitrary.

Also, note that if χθ = θζχ for a given θ ∈ SL2(Z) with tr(θ) ∈ {−1, 0, 1} then the entries

β3, γ3 in the matrix χ can be expressed in terms of the entries β2, γ2 ∈ Z and the entries

a, b, c, d ∈ Z of θ.
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6 Extensions of automorphisms

We next discuss which of the automorphisms of D computed in section 5 extend to automor-

phisms of the continuous Lie group S2. Recall that this enables us to classify the symmetries

(changes of generators) φ of D given in section 4.2 as

1. ‘Elastic’ if φ extends to an automorphism φ′ of D and φ′ extends uniquely to an

automorphism φ̃ : S2 → S2. These changes of generators are restrictions of elastic

deformations of the continuum crystal whose distribution of defects is uniform and has

corresponding Lie group S2.

2. ‘Inelastic’ if

(a) if φ does not extend to an automorphism of D; or

(b) if φ extends to an automorphism φ′ of D but φ′ does not extend uniquely to an

automorphism of S2.

These changes of generators preserve the set of points in D but not its group structure.

In this section we will show by direct calculation that for crystals with underlying Lie group

S2 there are no changes of generators φ in the class 2(a) above. That is; all automorphisms of

D ⊂ S2 extend uniquely to automorphisms of S2. This is a computation which has not been

required in the analysis of other classes of crystals with uniform distributions of defects, where

the underlying Lie group if nilpotent or in the solvable class S1. In those cases results of Mal’cev

[15] and Gorbatsevich [10] respectively guarantee that any automorphism of a uniform discrete

subgroup will extend uniquely to an automorphism of the ambient continuous Lie group. Since

no corresponding general result exists for automorphisms of the class of solvable Lie group S2
we proceed by direct calculation. We show explicitly how each of the automorphisms of D

computed in section 5 extends uniquely to an automorphisms of S2 computed in section 3.4.

We should note first that a particular discrete subgroup D (determined by the matrix θ ∈
SL2(Z) with tr(θ) ∈ {−2,−1, 0, 1}) is a subgroup of infinitely many (isomorphic) Lie groups

S2 corresponding to different choices of k where 2 cos k = tr(θ). (Recall that k = ±k0 + 2πn

for any n ∈ Z where k0 is the value of k in (3.8) with n = 1, so there are infinitely many

possible values of k for a given value of tr(θ) ∈ {−2,−1, 0, 1}. Choosing one of these values of

k determines the matrix A which specifies a particular Lie group in the isomorphism class of

S2.)

Assume that we are given θ with tr(θ) ∈ {−2,−1, 0, 1} and a corresponding fixed value of

k. Thus a particular group S2(k) and discrete subgroup D = D(θ) ⊂ S2(k) are determined.

Here we will show that the automorphisms of D(θ) extend uniquely to automorphisms of

S2(k). Notice that in section 3.4 we computed the automorphisms of Sm with respect to the

basis {f1,f2,f3} and the automorphisms of Dm in section 5 are given in terms of changes of

generators expressed with respect to the basis {e1,e2,e3}. The change of basis is specified by

the matrix M in (3.13) which depends on k.
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Let φD : D → D be an automorphism and suppose that it extends to an automorphism

φ̃ : S2 → S2. We show that this extension exists and is unique. Let x = xiei ∈ D and

rm(x) = AqBmCn for some q,m, n ∈ Z. Thus

x =






 θq

(
m

n

)

q


 with respect to the basis {e1,e2,e3}

M−T


 θq

(
m

n

)

q


 with respect to the basis {f 1,f2,f3}

If φD extends to φ̃ then φD(x) = φ̃(x) for all x ∈ D. In section 5 we computed all

automorphisms φm of Dm and these automorphisms are in one to one correspondence with

the automorphisms of D since they satisfy

φm(rm(x)) = rm(φD(x)) for x ∈ D.

Therefore

φD(x) = r−1
m (φm(rm(x))) = r−1

m (φm(AqBmCn))

= r−1
m ((AζBβ1Cγ1)q(Bβ2Cγ2)m(Bβ3Cγ3)n)

= r−1
m (AqζBs+mβ2+nβ3Ct+mγ2+nγ3)

= M−T


 θqζ

[(
s

t

)
+ χ

(
m

n

)]

qζ


 , (6.1)

with respect to the basis {f1,f2,f3}, recalling the definition of the matrix of exponents χ from

(5.4) and where

(
s

t

)
=





(
0

0

)
if q = 0.

(∑q−1
j=0 θ

−jζ
)(

β1
γ1

)
if q 6= 0.

From (3.20) the automorphism φ̃ is uniquely determined by the values of ǫ ∈ {0, 1} and

α, β, γ, δ ∈ R and satisfies

φ̃(x) =


 W (ǫ)

(
α β

−β α

)
M

−T
θq

(
m

n

)
+ F (B(−1)ǫq)W (ǫ)q

(
γ

δ

)

(−1)ǫq


 (6.2)

where

M =

(
−b′(0) a′(0) + k

−b′(0) a′(0)− k

)
,
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(the top left 2×2 matrix contained inM) and the quantitiesW (ǫ) and F (B(−1)ǫq) are as defined

in section 3.4. Here the components are again given with respect to the basis {f1,f2,f3}.

Comparing (6.1) and (6.2) we see that if φD is to extend to φ̃, it must be the case that

ζ = (−1)ǫ and furthermore, for all q,m, n ∈ Z

M
−T
θq(−1)ǫ

[(
s

t

)
+ χ

(
m

n

)]
=

W (ǫ)

(
α β

−β α

)
M

−T
θq

(
m

n

)
+ F (B(−1)ǫq)W (ǫ)q

(
γ

δ

)
. (6.3)

Thus we must have

M
−T
θq(−1)ǫχ = W (ǫ)

(
α β

−β α

)
M

−T
θq, (6.4)

M
−T

q∑

j=1

θj(−1)ǫ
(
β1
γ1

)
= F (B(−1)ǫq)W (ǫ)q

(
γ

δ

)
, (6.5)

where q 6= 0 in (6.5).

Using the fact that θ(−1)ǫχ = χθ since φD is an automorphism, from (6.4) we find

(
α β

−β α

)
=W (ǫ)M

−T
χM

T
(6.6)

and hence the real numbers α and β are uniquely determined by the values of ǫ and χ.

Furthermore, let us define

p :=





2 when tr(θ) = −2

3 when tr(θ) = −1

4 when tr(θ) = 0

6 when tr(θ) = 1

Then we can note from (3.18) that if q 6= 0 mod p, the matrix F (B(−1)ǫq) has a well defined

inverse and we can write

(
γ

δ

)
=

1

q
W (ǫ)(F (B(−1)ǫq))−1M

−T
q∑

j=1

θj(−1)ǫ

︸ ︷︷ ︸
R(ǫ)

(
β1
γ1

)

(If q = 0 mod p then both sides of (6.5) are zero and we gain no information about γ and δ for

given values of β1 and γ1.) It can be observed that the value of the matrix R(ǫ) is independent

of q 6= 0 mod p and is given by

R(ǫ) =W (ǫ)(F (B(−1)ǫ))−TM
−T
.
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Since this matrix is nonsingular, the values of γ and δ are determined uniquely by the values

of the exponents β1 and γ1 for a given automorphism of D. Thus we have shown directly that

every automorphisms φD : D → D extends uniquely to an automorphism φ̃ : S2 → S2 for a

given value of k. In particular, we have shown that for a given automorphism φD of D specified

by the matrix χ, β1, γ1 ∈ Z and ǫ ∈ {0, 1} there are unique values of α, β, γ, δ and ζ which

specify the automorphism φ̃ : S2 → S2 to which φD extends.

7 Conclusions and discussion

The technical calculations given in this paper have allowed us to complete the classification

of symmetries of crystals with uniform distributions of defects, which preserve the Lie group

structure. Let us now briefly summarize the results.

The energy density w of a crystal with a uniform distribution of defects depends on argu-

ments {ℓa} = {ℓa(0)} and S, where the vectors {ℓa} specify a set of generators of a discrete

subgroup D of the Lie group associated with the given constant value of the dislocation density

tensor S. The underlying Lie group must be in one of three classes: it is either nilpotent or

isomorphic to one of two classes of solvable Lie groups denoted S1 and S2. In this paper we

have focused on the case where the Lie group is a solvable group in the class S2.

A symmetry of the energy density function is a change of generators of D which preserves

the set of points in R3 associated with the elements of D. These symmetries have been shown

to satisfy conditions (4.7)–(4.8) for subgroups D ⊂ S2. Of these changes of generators, only

those which extend to automorphisms φD of D also preserve the group structure. These are the

changes of generators which satisfy condition (5.5). These symmetries also have been shown

in this paper to extend uniquely to automorphisms of the underlying continuous Lie group S2
and hence they are (restrictions of) elastic deformations of the continuum defective crystal. We

call such symmetries of D ‘elastic’. The remaining symmetries of D which do not extend to

automorphisms of D (or S2) are classified as inelastic.

Together with work presented in [18] and [21], this completes the classification of all group

preserving symmetries of uniform discrete defective crystals as either elastic or inelastic.

A future task will be to understand the properties of the inelastic symmetries with reference

to corresponding mechanical problems including exploring any possible correlations between

these symmetries and the presence of slip planes in crystalline materials.
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