404 research outputs found

    Lack of Cetuximab induced skin toxicity in a previously irradiated field: case report and review of the literature

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Mutation, amplification or dysregulation of the EGFR family leads to uncontrolled division and predisposes to cancer. Inhibiting the EGFR represents a form of targeted cancer therapy.</p> <p>Case report</p> <p>We report the case of 79 year old gentlemen with a history of skin cancer involving the left ear who had radiation and surgical excision. He had presented with recurrent lymph node in the left upper neck. We treated him with radiation therapy concurrently with Cetuximab. He developed a skin rash over the face and neck area two weeks after starting Cetuximab, which however spared the previously irradiated area.</p> <p>Conclusion</p> <p>The etiology underlying the sparing of the previously irradiated skin maybe due to either decrease in the population of EGFR expressing cells or decrease in the EGFR expression.</p> <p>We raised the question that "Is it justifiable to use EGFR inhibitors for patients having recurrence in the previously irradiated field?" We may need further research to answer this question which may guide the physicians in choosing appropriate drug in this scenario.</p

    Macrocyclic colibactin induces DNA double-strand breaks via copper-mediated oxidative cleavage.

    Get PDF
    Colibactin is an assumed human gut bacterial genotoxin, whose biosynthesis is linked to the clb genomic island that has a widespread distribution in pathogenic and commensal human enterobacteria. Colibactin-producing gut microbes promote colon tumour formation and enhance the progression of colorectal cancer via cellular senescence and death induced by DNA double-strand breaks (DSBs); however, the chemical basis that contributes to the pathogenesis at the molecular level has not been fully characterized. Here, we report the discovery of colibactin-645, a macrocyclic colibactin metabolite that recapitulates the previously assumed genotoxicity and cytotoxicity. Colibactin-645 shows strong DNA DSB activity in vitro and in human cell cultures via a unique copper-mediated oxidative mechanism. We also delineate a complete biosynthetic model for colibactin-645, which highlights a unique fate of the aminomalonate-building monomer in forming the C-terminal 5-hydroxy-4-oxazolecarboxylic acid moiety through the activities of both the polyketide synthase ClbO and the amidase ClbL. This work thus provides a molecular basis for colibactin's DNA DSB activity and facilitates further mechanistic study of colibactin-related colorectal cancer incidence and prevention

    Single-cell analysis reveals individual spore responses to simulated space vacuum

    Get PDF
    Outer space is a challenging environment for all forms of life, and dormant spores of bacteria have been frequently used to study the survival of terrestrial life in a space journey. Previous work showed that outer space vacuum alone can kill bacterial spores. However, the responses and mechanisms of resistance of individual spores to space vacuum are unclear. Here, we examined spores’ molecular changes under simulated space vacuum (~10−5 Pa) using micro-Raman spectroscopy and found that this vacuum did not cause significant denaturation of spore protein. Then, live-cell microscopy was developed to investigate the temporal events during germination, outgrowth, and growth of individual Bacillus spores. The results showed that after exposure to simulated space vacuum for 10 days, viability of spores of two Bacillus species was reduced up to 35%, but all spores retained their large Ca2 +-dipicolinic acid depot. Some of the killed spores did not germinate, and the remaining germinated but did not proceed to vegetative growth. The vacuum treatment slowed spore germination, and changed average times of all major germination events. In addition, viable vacuum-treated spores exhibited much greater sensitivity than untreated spores to dry heat and hyperosmotic stress. Among spores’ resistance mechanisms to high vacuum, DNA-protective α/β−type small acid-soluble proteins, and non- homologous end joining and base excision repair of DNA played the most important roles, especially against multiple cycles of vacuum treatment. Overall, these results give new insight into individual spore’s responses to space vacuum and provide new techniques for microorganism analysis at the single-cell level

    Towards the development of a simulator for investigating the impact of people management practices on retail performance

    Get PDF
                   \ud           \ud 

    Inverse Current Source Density Method in Two Dimensions: Inferring Neural Activation from Multielectrode Recordings

    Get PDF
    The recent development of large multielectrode recording arrays has made it affordable for an increasing number of laboratories to record from multiple brain regions simultaneously. The development of analytical tools for array data, however, lags behind these technological advances in hardware. In this paper, we present a method based on forward modeling for estimating current source density from electrophysiological signals recorded on a two-dimensional grid using multi-electrode rectangular arrays. This new method, which we call two-dimensional inverse Current Source Density (iCSD 2D), is based upon and extends our previous one- and three-dimensional techniques. We test several variants of our method, both on surrogate data generated from a collection of Gaussian sources, and on model data from a population of layer 5 neocortical pyramidal neurons. We also apply the method to experimental data from the rat subiculum. The main advantages of the proposed method are the explicit specification of its assumptions, the possibility to include system-specific information as it becomes available, the ability to estimate CSD at the grid boundaries, and lower reconstruction errors when compared to the traditional approach. These features make iCSD 2D a substantial improvement over the approaches used so far and a powerful new tool for the analysis of multielectrode array data. We also provide a free GUI-based MATLAB toolbox to analyze and visualize our test data as well as user datasets

    Third generation cephalosporin use in a tertiary hospital in Port of Spain, Trinidad: need for an antibiotic policy

    Get PDF
    BACKGROUND: Tertiary care hospitals are a potential source for development and spread of bacterial resistance being in the loop to receive outpatients and referrals from community nursing homes and hospitals. The liberal use of third-generation cephalosporins (3GCs) in these hospitals has been associated with the emergence of extended-spectrum beta- lactamases (ESBLs) presenting concerns for bacterial resistance in therapeutics. We studied the 3GC utilization in a tertiary care teaching hospital, in warded patients (medical, surgical, gynaecology, orthopedic) prescribed these drugs. METHODS: Clinical data of patients (≥ 13 years) admitted to the General Hospital, Port of Spain (POSGH) from January to June 2000, and who had received 3GCs based on the Pharmacy records were studied. The Sanford Antibiotic Guide 2000, was used to determine appropriateness of therapy. The agency which procures drugs for the Ministry of Health supplied the cost of drugs. RESULTS: The prevalence rate of use of 3GCs was 9.5 per 1000 admissions and was higher in surgical and gynecological admissions (21/1000) compared with medical and orthopedic (8 /1000) services (p < 0.05). Ceftriaxone was the most frequently used 3GC. Sixty-nine (36%) patients without clinical evidence of infection received 3Gcs and prescribing was based on therapeutic recommendations in 4% of patients. At least 62% of all prescriptions were inappropriate with significant associations for patients from gynaecology (p < 0.003), empirical prescribing (p < 0.48), patients with undetermined infection sites (p < 0.007), and for single drug use compared with multiple antibiotics (p < 0.001). Treatment was twice as costly when prescribing was inappropriate CONCLUSIONS: There is extensive inappropriate 3GC utilization in tertiary care in Trinidad. We recommend hospital laboratories undertake continuous surveillance of antibiotic resistance patterns so that appropriate changes in prescribing guidelines can be developed and implemented. Though guidelines for rational antibiotic use were developed they have not been re-visited or encouraged, suggesting urgent antibiotic review of the hospital formulary and instituting an infection control team. Monitoring antibiotic use with microbiology laboratory support can promote rational drug utilization, cut costs, halt inappropriate 3GC prescribing, and delay the emergence of resistant organisms. An ongoing antibiotic peer audit is suggested

    A Two-Gene Balance Regulates Salmonella Typhimurium Tolerance in the Nematode Caenorhabditis elegans

    Get PDF
    Lysozymes are antimicrobial enzymes that perform a critical role in resisting infection in a wide-range of eukaryotes. However, using the nematode Caenorhabditis elegans as a model host we now demonstrate that deletion of the protist type lysozyme LYS-7 renders animals susceptible to killing by the fatal fungal human pathogen Cryptococcus neoformans, but, remarkably, enhances tolerance to the enteric bacteria Salmonella Typhimurium. This trade-off in immunological susceptibility in C. elegans is further mediated by the reciprocal activity of lys-7 and the tyrosine kinase abl-1. Together this implies a greater complexity in C. elegans innate immune function than previously thought

    Nonsense-mediated mRNA decay controls the changes in yeast ribosomal protein pre-mRNAs levels upon osmotic stress

    Get PDF
    The expression of ribosomal protein (RP) genes requires a substantial part of cellular transcription, processing and translation resources. Thus, the RP expression must be tightly regulated in response to conditions that compromise cell survival. In Saccharomyces cerevisiae cells, regulation of the RP gene expression at the transcriptional, mature mRNA stability and translational levels during the response to osmotic stress has been reported. Reprogramming global protein synthesis upon osmotic shock includes the movement of ribosomes from RP transcripts to stress-induced mRNAs. Using tiling arrays, we show that osmotic stress yields a drop in the levels of RP pre-mRNAs in S. cerevisiae cells. An analysis of the tiling array data, together with transcription rates data, shows a poor correlation, indicating that the drop in the RP pre-mRNA levels is not merely a result of the lowered RP transcription rates. A kinetic study using quantitative RT-PCR confirmed the decrease in the levels of several RP-unspliced transcripts during the first 15 minutes of osmotic stress, which seems independent of MAP kinase Hog1. Moreover, we found that the mutations in the components of the nonsense-mediated mRNA decay (NMD), Upf1, Upf2, Upf3 or in exonuclease Xrn1, eliminate the osmotic stress-induced drop in RP pre-mRNAs. Altogether, our results indicate that the degradation of yeast RP unspliced transcripts by NMD increases during osmotic stress, and suggest that this might be another mechanism to control RP synthesis during the stress response

    Inferring predominant pathways in cellular models of breast cancer using limited sample proteomic profiling

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Molecularly targeted drugs inhibit aberrant signaling within oncogenic pathways. Identifying the predominant pathways at work within a tumor is a key step towards tailoring therapies to the patient. Clinical samples pose significant challenges for proteomic profiling, an attractive approach for identifying predominant pathways. The objective of this study was to determine if information obtained from a limited sample (i.e., a single gel replicate) can provide insight into the predominant pathways in two well-characterized breast cancer models.</p> <p>Methods</p> <p>A comparative proteomic analysis of total cell lysates was obtained from two cellular models of breast cancer, BT474 (HER2+/ER+) and SKBR3 (HER2+/ER-), using two-dimensional electrophoresis and MALDI-TOF mass spectrometry. Protein interaction networks and canonical pathways were extracted from the Ingenuity Pathway Knowledgebase (IPK) based on association with the observed pattern of differentially expressed proteins.</p> <p>Results</p> <p>Of the 304 spots that were picked, 167 protein spots were identified. A threshold of 1.5-fold was used to select 62 proteins used in the analysis. IPK analysis suggested that metabolic pathways were highly associated with protein expression in SKBR3 cells while cell motility pathways were highly associated with BT474 cells. Inferred protein networks were confirmed by observing an up-regulation of IGF-1R and profilin in BT474 and up-regulation of Ras and enolase in SKBR3 using western blot.</p> <p>Conclusion</p> <p>When interpreted in the context of prior information, our results suggest that the overall patterns of differential protein expression obtained from limited samples can still aid in clinical decision making by providing an estimate of the predominant pathways that underpin cellular phenotype.</p
    corecore