386 research outputs found

    Extended chiral algebras and the emergence of SU(2) quantum numbers in the Coulomb gas

    Get PDF
    We study a set of chiral symmetries contained in degenerate operators beyond the `minimal' sector of the c(p,q) models. For the operators h_{(2j+2)q-1,1}=h_{1,(2j+2)p-1} at conformal weight [ (j+1)p-1 ][ (j+1)q -1 ], for every 2j \in N, we find 2j+1 chiral operators which have quantum numbers of a spin j representation of SU(2). We give a free-field construction of these operators which makes this structure explicit and allows their OPEs to be calculated directly without any use of screening charges. The first non-trivial chiral field in this series, at j=1/2, is a fermionic or para-fermionic doublet. The three chiral bosonic fields, at j=1, generate a closed W-algebra and we calculate the vacuum character of these triplet models.Comment: 23 pages Late

    Extended multiplet structure in Logarithmic Conformal Field Theories

    Full text link
    We use the process of quantum hamiltonian reduction of SU(2)_k, at rational level k, to study explicitly the correlators of the h_{1,s} fields in the c_{p,q} models. We find from direct calculation of the correlators that we have the possibility of extra, chiral and non-chiral, multiplet structure in the h_{1,s} operators beyond the `minimal' sector. At the level of the vacuum null vector h_{1,2p-1}=(p-1)(q-1) we find that there can be two extra non-chiral fermionic fields. The extra indicial structure present here permeates throughout the entire theory. In particular we find we have a chiral triplet of fields at h_{1,4p-1}=(2p-1)(2q-1). We conjecture that this triplet algebra may produce a rational extended c_{p,q} model. We also find a doublet of fields at h_{1,3p-1}=(\f{3p}{2}-1)(\f{3q}{2}-1). These are chiral fermionic operators if p and q are not both odd and otherwise parafermionic.Comment: 24 pages LATEX. Minor corrections and extra reference

    Extended chiral algebras in the SU(2)_0 WZNW model

    Get PDF
    We investigate the W-algebras generated by the integer dimension chiral primary operators of the SU(2)_0 WZNW model. These have a form almost identical to that found in the c=-2 model but have, in addition, an extended Kac-Moody structure. Moreover on Hamiltonian reduction these SU(2)_0 W-algebras exactly reduce to those found in c=-2. We explicitly find the free field representations for the chiral j=2 and j=3 operators which have respectively a fermionic doublet and bosonic triplet nature. The correlation functions of these operators accounts for the rational solutions of the Knizhnik-Zamolodchikov equation that we find. We explicitly compute the full algebra of the j=2 operators and find that the associativity of the algebra is only guaranteed if certain null vectors decouple from the theory. We conjecture that these algebras may produce a quasi-rational conformal field theory.Comment: 18 pages LATEX. Minor corrections. Full j=2 algebra adde

    Cerebellar Integrity in the Amyotrophic Lateral Sclerosis - Frontotemporal Dementia Continuum

    Get PDF
    Amyotrophic lateral sclerosis (ALS) and behavioural variant frontotemporal dementia (bvFTD) are multisystem neurodegenerative disorders that manifest overlapping cognitive, neuropsychiatric and motor features. The cerebellum has long been known to be crucial for intact motor function although emerging evidence over the past decade has attributed cognitive and neuropsychiatric processes to this structure. The current study set out i) to establish the integrity of cerebellar subregions in the amyotrophic lateral sclerosis-behavioural variant frontotemporal dementia spectrum (ALS-bvFTD) and ii) determine whether specific cerebellar atrophy regions are associated with cognitive, neuropsychiatric and motor symptoms in the patients. Seventy-eight patients diagnosed with ALS, ALS-bvFTD, behavioural variant frontotemporal dementia (bvFTD), most without C9ORF72 gene abnormalities, and healthy controls were investigated. Participants underwent cognitive, neuropsychiatric and functional evaluation as well as structural imaging using voxel-based morphometry (VBM) to examine the grey matter subregions of the cerebellar lobules, vermis and crus. VBM analyses revealed: i) significant grey matter atrophy in the cerebellum across the whole ALS-bvFTD continuum; ii) atrophy predominantly of the superior cerebellum and crus in bvFTD patients, atrophy of the inferior cerebellum and vermis in ALS patients, while ALS-bvFTD patients had both patterns of atrophy. Post-hoc covariance analyses revealed that cognitive and neuropsychiatric symptoms were particularly associated with atrophy of the crus and superior lobule, while motor symptoms were more associated with atrophy of the inferior lobules. Taken together, these findings indicate an important role of the cerebellum in the ALS-bvFTD disease spectrum, with all three clinical phenotypes demonstrating specific patterns of subregional atrophy that associated with different symptomology

    Formation and annihilation of nanocavities during keV ion irradiation of Ge

    Full text link
    Nanocavities in Ge(111) created by 5 keV Xe ion irradiation are characterized by ex situ transmission electron microscopy and Rutherford backscattering spectrometry. Nanocavities nucleate near the surface and then undergo thermal migration. Nanocavities with average diameter of 10 nm and areal density of 5.1 x 10-3 nm-2 are observed at 773 K, while nanocavities with average diameter of 2.9 nm and areal density of 3.1 x 10-3 nm-2 are observed at 673 K. The estimated Xe gas pressure inside the nanocavities is 0.035 GPa at 773 K, much smaller than the estimated equilibrium pressure 0.38 GPa. This result suggests that the nanocavities grow beyond equilibrium size at 773 K. The nanocavities are annihilated at the surface to form surface pits by the interaction of displacement cascades of keV Xe ions with the nanocavities. These pits are characterized by in situ scanning tunneling microscopy. Pits are created on Ge(111) and Ge(001) at temperatures ~ 523-578 K by keV Xe ions even when less than a bilayer (monolayer) of surface material is removed.Comment: 26 pages, 7 figures, to be published in Physical Review

    Mechanisms underlying fatigue: a voxel-based morphometric study of chronic fatigue syndrome

    Get PDF
    BACKGROUND: Fatigue is a crucial sensation that triggers rest, yet its underlying neuronal mechanisms remain unclear. Intense long-term fatigue is a symptom of chronic fatigue syndrome, which is used as a model to study the mechanisms underlying fatigue. METHODS: Using magnetic resonance imaging, we conducted voxel-based morphometry of 16 patients and 49 age-matched healthy control subjects. RESULTS: We found that patients with chronic fatigue syndrome had reduced gray-matter volume in the bilateral prefrontal cortex. Within these areas, the volume reduction in the right prefrontal cortex paralleled the severity of the fatigue of the subjects. CONCLUSION: These results are consistent with previous reports of an abnormal distribution of acetyl-L-carnitine uptake, which is one of the biochemical markers of chronic fatigue syndrome, in the prefrontal cortex. Thus, the prefrontal cortex might be an important element of the neural system that regulates sensations of fatigue

    Molecular Phylogeny Restores the Supra-Generic Subdivision of Homoscleromorph Sponges (Porifera, Homoscleromorpha)

    Get PDF
    Homoscleromorpha is the fourth major sponge lineage, recently recognized to be distinct from the Demospongiae. It contains <100 described species of exclusively marine sponges that have been traditionally subdivided into 7 genera based on morphological characters. Because some of the morphological features of the homoscleromorphs are shared with eumetazoans and are absent in other sponges, the phylogenetic position of the group has been investigated in several recent studies. However, the phylogenetic relationships within the group remain unexplored by modern methods.Here we describe the first molecular phylogeny of Homoscleromorpha based on nuclear (18S and 28S rDNA) and complete mitochondrial DNA sequence data that focuses on inter-generic relationships. Our results revealed two robust clades within this group, one containing the spiculate species (genera Plakina, Plakortis, Plakinastrella and Corticium) and the other containing aspiculate species (genera Oscarella and Pseudocorticium), thus rejecting a close relationship between Pseudocorticium and Corticium. Among the spiculate species, we found affinities between the Plakortis and Plakinastrella genera, and between the Plakina and Corticium. The validity of these clades is furthermore supported by specific morphological characters, notably the type of spicules. Furthermore, the monophyly of the Corticium genus is supported while the monophyly of Plakina is not.As the result of our study we propose to restore the pre-1995 subdivision of Homoscleromorpha into two families: Plakinidae Schulze, 1880 for spiculate species and Oscarellidae Lendenfeld, 1887 for aspiculate species that had been rejected after the description of the genus Pseudocorticium. We also note that the two families of homoscleromorphs exhibit evolutionary stable, but have drastically distinct mitochondrial genome organizations that differ in gene content and gene order

    Predicting the impact of Lynch syndrome-causing missense mutations from structural calculations

    Get PDF
    Accurate methods to assess the pathogenicity of mutations are needed to fully leverage the possibilities of genome sequencing in diagnosis. Current data-driven and bioinformatics approaches are, however, limited by the large number of new variations found in each newly sequenced genome, and often do not provide direct mechanistic insight. Here we demonstrate, for the first time, that saturation mutagenesis, biophysical modeling and co-variation analysis, performed in silico, can predict the abundance, metabolic stability, and function of proteins inside living cells. As a model system, we selected the human mismatch repair protein, MSH2, where missense variants are known to cause the hereditary cancer predisposition disease, known as Lynch syndrome. We show that the majority of disease-causing MSH2 mutations give rise to folding defects and proteasome-dependent degradation rather than inherent loss of function, and accordingly our in silico modeling data accurately identifies disease-causing mutations and outperforms the traditionally used genetic disease predictors. Thus, in conclusion, in silico biophysical modeling should be considered for making genotype-phenotype predictions and for diagnosis of Lynch syndrome, and perhaps other hereditary diseases

    FGF4 Independent Derivation of Trophoblast Stem Cells from the Common Vole

    Get PDF
    The derivation of stable multipotent trophoblast stem (TS) cell lines from preimplantation, and early postimplantation mouse embryos has been reported previously. FGF4, and its receptor FGFR2, have been identified as embryonic signaling factors responsible for the maintenance of the undifferentiated state of multipotent TS cells. Here we report the derivation of stable TS-like cell lines from the vole M. rossiaemeridionalis, in the absence of FGF4 and heparin. Vole TS-like cells are similar to murine TS cells with respect to their morphology, transcription factor gene expression and differentiation in vitro into derivatives of the trophectoderm lineage, and with respect to their ability to invade and erode host tissues, forming haemorrhagic tumours after subcutaneous injection into nude mice. Moreover, vole TS-like cells carry an inactive paternal X chromosome, indicating that they have undergone imprinted X inactivation, which is characteristic of the trophoblast lineage. Our results indicate that an alternative signaling pathway may be responsible for the establishment and stable proliferation of vole TS-like cells

    The influence of hydrological regimes on sex ratios and spatial segregation of the sexes in two dioecious riparian shrub species in northern Sweden

    Get PDF
    River management practices have altered the hydrological regimes of many rivers and also altered the availability of regeneration niches for riparian species. We investigated the impact of changed hydrological regimes on the sex ratios and the Spatial Segregation of the Sexes (SSS) in the dioecious species Salix myrsinifolia Salisb.–phylicifolia L. and S. lapponum L. by studying the free-flowing Vindel River and the regulated Ume River in northern Sweden. We surveyed sex ratios of these species in 12 river reaches on the Vindel River and in 17 reaches on the Ume River. In addition, we surveyed the sex and location above mean river stage of 1,002 individuals across both river systems to investigate the SSS of both species. Cuttings were collected from male and female individuals of S. myrsinifolia–phylicifolia from both rivers and subjected to four different water table regimes in a greenhouse experiment to investigate growth response between the sexes. We found an M/F sex ratio in both river systems similar to the regional norm of 0.62 for S. myrsinifolia–phylicifolia and of 0.42 for S. lapponum. We found no evidence of SSS in either the free-flowing Vindel River or the regulated Ume River. In the greenhouse experiment, hydrological regime had a significant effect on shoot and root dry weight and on root length. Significantly higher shoot dry weights were found in females than in males and significantly different shoot and root dry weights were found between cuttings taken from the two rivers. We concluded that changed hydrological regimes are likely to alter dimensions of the regeneration niche and therefore to influence sex ratios and SSS at an early successional stage, making it difficult to find clear spatial patterns once these species reach maturity and can be sexed
    • …
    corecore