35 research outputs found

    Plasmepsin II–III copy number accounts for bimodal piperaquine resistance among Cambodian Plasmodium falciparum

    Get PDF
    Multidrug resistant Plasmodium falciparum in Southeast Asia endangers regional malaria elimination and threatens to spread to other malaria endemic areas. Understanding mechanisms of piperaquine (PPQ) resistance is crucial for tracking its emergence and spread, and to develop effective strategies for overcoming it. Here we analyze a mechanism of PPQ resistance in Cambodian parasites. Isolates exhibit a bimodal dose–response curve when exposed to PPQ, with the area under the curve quantifying their survival in vitro. Increased copy number for plasmepsin II and plasmepsin III appears to explain enhanced survival when exposed to PPQ in most, but not all cases. A panel of isogenic subclones reinforces the importance of plasmepsin II–III copy number to enhanced PPQ survival. We conjecture that factors producing increased parasite survival under PPQ exposure in vitro may drive clinical PPQ failures in the field

    Identification and Functional Validation of the Novel Antimalarial Resistance Locus PF10_0355 in Plasmodium falciparum

    Get PDF
    The Plasmodium falciparum parasite's ability to adapt to environmental pressures, such as the human immune system and antimalarial drugs, makes malaria an enduring burden to public health. Understanding the genetic basis of these adaptations is critical to intervening successfully against malaria. To that end, we created a high-density genotyping array that assays over 17,000 single nucleotide polymorphisms (~1 SNP/kb), and applied it to 57 culture-adapted parasites from three continents. We characterized genome-wide genetic diversity within and between populations and identified numerous loci with signals of natural selection, suggesting their role in recent adaptation. In addition, we performed a genome-wide association study (GWAS), searching for loci correlated with resistance to thirteen antimalarials; we detected both known and novel resistance loci, including a new halofantrine resistance locus, PF10_0355. Through functional testing we demonstrated that PF10_0355 overexpression decreases sensitivity to halofantrine, mefloquine, and lumefantrine, but not to structurally unrelated antimalarials, and that increased gene copy number mediates resistance. Our GWAS and follow-on functional validation demonstrate the potential of genome-wide studies to elucidate functionally important loci in the malaria parasite genome.Bill & Melinda Gates FoundationEllison Medical FoundationExxon Mobil FoundationFogarty International CenterNational Institute of Allergy and Infectious Diseases (U.S.)Burroughs Wellcome FundDavid & Lucile Packard FoundationNational Science Foundation (U.S.). Graduate Research Fellowship Progra

    Population Genetic Analysis of Plasmodium falciparum Parasites Using a Customized Illumina GoldenGate Genotyping Assay

    Get PDF
    The diversity in the Plasmodium falciparum genome can be used to explore parasite population dynamics, with practical applications to malaria control. The ability to identify the geographic origin and trace the migratory patterns of parasites with clinically important phenotypes such as drug resistance is particularly relevant. With increasing single-nucleotide polymorphism (SNP) discovery from ongoing Plasmodium genome sequencing projects, a demand for high SNP and sample throughput genotyping platforms for large-scale population genetic studies is required. Low parasitaemias and multiple clone infections present a number of challenges to genotyping P. falciparum. We addressed some of these issues using a custom 384-SNP Illumina GoldenGate assay on P. falciparum DNA from laboratory clones (long-term cultured adapted parasite clones), short-term cultured parasite isolates and clinical (non-cultured isolates) samples from East and West Africa, Southeast Asia and Oceania. Eighty percent of the SNPs (n = 306) produced reliable genotype calls on samples containing as little as 2 ng of total genomic DNA and on whole genome amplified DNA. Analysis of artificial mixtures of laboratory clones demonstrated high genotype calling specificity and moderate sensitivity to call minor frequency alleles. Clear resolution of geographically distinct populations was demonstrated using Principal Components Analysis (PCA), and global patterns of population genetic diversity were consistent with previous reports. These results validate the utility of the platform in performing population genetic studies of P. falciparum

    Mycobacteria counteract a TLR-mediated nitrosative defense mechanism in a zebrafish infection model.

    Get PDF
    Pulmonary tuberculosis (TB), caused by the intracellular bacterial pathogen Mycobacterium tuberculosis (Mtb), is a major world health problem. The production of reactive nitrogen species (RNS) is a potent cytostatic and cytotoxic defense mechanism against intracellular pathogens. Nevertheless, the protective role of RNS during Mtb infection remains controversial. Here we use an anti-nitrotyrosine antibody as a readout to study nitration output by the zebrafish host during early mycobacterial pathogenesis. We found that recognition of Mycobacterium marinum, a close relative of Mtb, was sufficient to induce a nitrosative defense mechanism in a manner dependent on MyD88, the central adaptor protein in Toll like receptor (TLR) mediated pathogen recognition. However, this host response was attenuated by mycobacteria via a virulence mechanism independent of the well-characterized RD1 virulence locus. Our results indicate a mechanism of pathogenic mycobacteria to circumvent host defense in vivo. Shifting the balance of host-pathogen interactions in favor of the host by targeting this virulence mechanism may help to alleviate the problem of infection with Mtb strains that are resistant to multiple drug treatments

    Nest-Site Selection among Ad\ue9lie, Chinstrap and Gentoo Penguins in Mixed Species Rookeries

    No full text
    Volume: 93Start Page: 243End Page: 24

    On the Mechanism of Nitrosoarene/Alkyne Cycloaddition

    No full text
    The thermal reaction between nitrosoarenes and alkynes produces N-hydroxyindoles as the major products. The mechanism of these novel reactions has been probed using a combination of experimental and computational methods. The reaction of nitrosobenzene (NB) with an excess of phenyl acetylene (PA) is determined to be first order in each reactant in benzene at 75° C. The reaction rates have been determined for reactions between phenyl acetylene with a set of p-substituted nitrosoarenes, 4-X-C(6)H(4)NO, and of 4-O(2)N-C(6)H(4)NO with a set of p-substituted arylalkynes, 4-Y-C(6)H(4)C≡CH. The former reactions are accelerated by electron-withdrawing X-groups (ρ = + 0.4), while the latter are faster with electron-donating Y groups (ρ = − 0.9). The kinetic isotope effect for the reaction of C(6)H(5)NO/C(6)D(5)NO with PhC≡CH is found to be 1.1 (± 0.1) while that between PhC≡CH/PhC≡CD with PhNO is also 1.1 (± 0.1). The reaction between nitrosobenzene and the radical clock probe cyclopropylacetylene affords 3-cyclopropyl indole in low yield. In addition to 3-carbomethoxy-N-hydroxyindole, the reaction between PA and o-carbomethoxy-nitrosobenzene also affords a tricyclic indole derivative 3, likely derived from trapping of an intermediate indoline nitrone with PA and subsequent rearrangement. Computational studies of the reaction mechanism were carried out with density functional theory at the (U)B3LYP/6-31+G(d) level. The lowest energy pathway of the reaction of PhNO with alkynes was found to be stepwise; the N-C bond between nitrosoarene and acetylene is formed first, the resulting vinyl diradical undergoes cis-trans isomerization, and then the C-C bond forms. Conjugating substituents Z on the alkyne, Z-C≡CH, lower the calculated (and observed) activation barrier, Z=-H (19 kcal/mol), -Ph (15.8 kcal/mol) and -C(O)H (13 kcal/mol). The regioselectivity of the reaction, with formation of the 3-substituted indole, was reproduced by the calculations of PhNO + PhC≡CH; the rate-limiting step for formation of the 2-substituted indole is higher in energy by 11.6 kcal/mol. The effects of –NO(2), -CN, -Cl, -Br, -Me, and -OMe substituents were computed for the reactions of p-X-C(6)H(4)NO with PhC≡CH and of PhNO and/or p-NO(2)-C(6)H(4)NO with p-Y-C(6)H(4)C≡CH. The activation energies for the set of p-XC(6)H(4)NO vary by 4.3 kcal/mol and follow the trend found experimentally, with electron withdrawing X-groups accelerating the reactions. The range of barriers for the p-Y-C(6)H(4)C≡CH reactions is smaller, about 1.5 kcal/mol and 1.8 kcal/mol in the cases of PhNO and p-NO(2)-PhNO, respectively. In agreement with the experiments, electron donating Y-groups on the alkyne accelerate the reactions with p-NO(2)-C(6)H(4)NO, while both ED and EW groups are predicted to facilitate the reaction. The calculated kinetic isotope effect for the reaction of C(6)H(5)NO/C(6)D(5)NO with PhC≡CH is negligible (as found experimentally) while that for PhC≡CH/PhC≡CD with PhNO (0.7) differs somewhat from the experiment (1.1). Taken together the experimental and computational results point to the operation of a step-wise diradical cycloaddition, with ratelimiting N-C bond formation and rapid C-C connection to form a bicyclic cyclohexadienyl-Noxyl diradical, followed by fast tautomerization to the N-hydroxyindole product

    Analysis of Plasmodium falciparum diversity in natural infections by deep sequencing.

    Get PDF
    Malaria elimination strategies require surveillance of the parasite population for genetic changes that demand a public health response, such as new forms of drug resistance. Here we describe methods for the large-scale analysis of genetic variation in Plasmodium falciparum by deep sequencing of parasite DNA obtained from the blood of patients with malaria, either directly or after short-term culture. Analysis of 86,158 exonic single nucleotide polymorphisms that passed genotyping quality control in 227 samples from Africa, Asia and Oceania provides genome-wide estimates of allele frequency distribution, population structure and linkage disequilibrium. By comparing the genetic diversity of individual infections with that of the local parasite population, we derive a metric of within-host diversity that is related to the level of inbreeding in the population. An open-access web application has been established for the exploration of regional differences in allele frequency and of highly differentiated loci in the P. falciparum genome
    corecore