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Abstract

The Plasmodium falciparum parasite’s ability to adapt to environmental pressures, such as the human immune system and
antimalarial drugs, makes malaria an enduring burden to public health. Understanding the genetic basis of these
adaptations is critical to intervening successfully against malaria. To that end, we created a high-density genotyping array
that assays over 17,000 single nucleotide polymorphisms (,1 SNP/kb), and applied it to 57 culture-adapted parasites from
three continents. We characterized genome-wide genetic diversity within and between populations and identified
numerous loci with signals of natural selection, suggesting their role in recent adaptation. In addition, we performed a
genome-wide association study (GWAS), searching for loci correlated with resistance to thirteen antimalarials; we detected
both known and novel resistance loci, including a new halofantrine resistance locus, PF10_0355. Through functional testing
we demonstrated that PF10_0355 overexpression decreases sensitivity to halofantrine, mefloquine, and lumefantrine, but
not to structurally unrelated antimalarials, and that increased gene copy number mediates resistance. Our GWAS and
follow-on functional validation demonstrate the potential of genome-wide studies to elucidate functionally important loci
in the malaria parasite genome.
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Introduction

Plasmodium falciparum malaria is a major public health challenge

that contributes significantly to global morbidity and mortality.

Efforts to control and eliminate malaria combine antimalarial

drugs, bed nets and indoor residual spraying, with vaccine

development a longer-term goal. Genetic variation in the parasite

population threatens to undermine these efforts, as the parasite

evolves rapidly to evade host immune systems, drugs and vaccines.

Studying genetic variation in parasite populations will expand our

understanding of basic parasite biology and its ability to adapt, and

will allow us to track parasites as they respond to intervention

efforts. Such understanding is increasingly important as countries

move towards reducing disease burden and the ultimate

elimination of malaria.

Given the potential impact of rapid evolution of P. falciparum in

response to control and eradication strategies, discovery and

characterization of P. falciparum genetic diversity has accelerated in

recent years. Since the first malaria genome was sequenced in

2002 [1], over 60,000 unique SNPs have been identified by

concerted sequencing efforts [2–4], and several genomic tiling

arrays [5–9] and low-density SNP arrays [10,11] have been
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developed to query this genetic variation. Recently the first

malaria GWAS was published [11], in which 189 drug-

phenotyped parasites from Asia, Africa and the Americas were

genotyped using a low-density array (3,257 SNPs); that study

identified loci under positive selection and found several novel

drug resistance candidates.

For our study, we adopted two strategies for identifying genes

involved in the malaria parasite’s adaptive response: searching for

signals of recent or ongoing natural selection, and searching for

loci associated with one important clinical adaptation—resistance

to antimalarial drugs. To make these searches possible, we began

by sequencing 9 geographically diverse strains of P. falciparum to

identify novel variation, thereby doubling the number of publicly

available SNPs to 111,536 (all accessible at plasmodb.org), and

used these SNPs to develop a high-density genotyping array

assaying 17,582 validated markers. After characterizing linkage

disequilibrium and population structure in our samples, we used

the arrays to search for evidence of both ongoing balancing

selection and recent positive selection, and to carry out a GWAS

that sought loci associated with resistance to thirteen antimalarial

agents. We then followed up one of the novel loci associated with

drug resistance in order to verify that variation there was

biologically involved in modulating drug response.

Results

Genetic Diversity
We identified global population structure among malaria

parasites using principal components analysis (PCA) of 57

genotyped culture-adapted parasite samples (Figure 1A, Table

S1, Figure S1). African, American and Asian samples form three

distinct clusters, reflecting the likely independent introduction of P.

falciparum from Africa into Asia and the Americas. There was little

evidence for structure within Africa, suggesting high gene flow

throughout the region (Figure S1). Asian and American parasites

however both show substantial internal structure.

There are also dramatic differences in linkage disequilibrium

(LD) between populations, with substantial LD extending less than

1 kb in Senegal, 10 kb in Thailand, and 100 kb in Brazil (Figure

S2). These observations are consistent with previous findings,

which showed that LD decays more rapidly in Africa, due either to

founder effects in other continents [12] or to elevated outcrossing

frequencies in Africa [12,13], where higher transmission intensity

leads to a greater likelihood of sexual outcrossing rather than

selfing within the mid-gut of vector mosquitoes.

The short LD in malaria, driven by high levels of recombina-

tion, means that a high density of markers is required to identify

candidate loci in association studies, since causal variants not on

the array can seldom be tagged by neighboring alleles (Table S2).

On the other hand, short LD can aid in fine-mapping candidate

associations and greatly accelerates the search for causal genes.

Short LD also aids in identifying genomic regions under recent

positive selection with recombination-based methods, since the

increased LD in selected regions should stand out against the

short-LD background.

Detecting Signals of Natural Selection
We expect that many parasite proteins that interact with the

host immune system will be under balancing selection, because

they will be under selective pressure to maintain high levels of

diversity. Indeed, previous studies have shown that regions of the

P. falciparum genome that are highly polymorphic and appear to be

under balancing selection encode antigens that are recognized by

the human immune system [4]. We examined evidence for

balancing selection in our data by searching for regions with high

nucleotide diversity (as measured by SNP p) and low population

divergence (as measured by FST) (Figure 1B). When we examined

the loci lying in this region of the graph (Figure S3), we found a

number of known antigens and vaccine candidates. Loci in the

same region with unknown function are thus potential novel

antigens that trigger human immune response to malaria, and may

prove useful as biomarkers or as candidate vaccine molecules.

We carried out a similar search for loci under positive selection

by identifying regions with both low nucleotide diversity within

Senegal and Thailand and high population divergence between

the two populations (Figure 1B). We observed throughout the

genome that nucleotide diversity was lower for nonsynonymous

SNPs than for intergenic SNPs (Figure S4), a characteristic result

of widespread purifying selection. At the same time, nonsynon-

ymous SNPs exhibited significantly greater divergence than

intergenic SNPs in all pairwise population comparisons, suggesting

the effect of positive selection in local P. falciparum populations.

Nonsynonymous SNPs with low diversity within a population and

high divergence between the two populations studied may

represent polymorphisms responsible for adaptive evolution.

We also carried out a genome-wide scan for recent positive

selection using the long-range haplotype (LRH) test [14], which

identifies common variants that have recently spread to high

prevalence using recombination as a clock. Approximately 15

genes were identified as having undergone recent positive selection

by this approach, including known drug resistance loci (pfcrt and

dhfr) as well as multiple members of the acyl-CoA synthetase (ACS)

and ubiquitin protein ligase families (Figures S5 and S6); these

latter genes also exhibit high divergence between Senegal and

Thailand (Figure 1B), evidence for selection that is recent and

population-specific. Taken as a group, the genes identified by the

LRH test show a significant enrichment for higher than average

population divergence (as measured by FST, Mann-Whitney

U = 1583, P = 0.0071). All of these loci (Table S3, Dataset S1),

which include genes in the folate metabolism, lipid biosynthesis

Author Summary

Malaria infection with the human pathogen Plasmodium
falciparum results in almost a million deaths each year,
mostly in African children. Efforts to eliminate malaria are
underway, but the parasite is adept at eluding both the
human immune response and antimalarial treatments.
Thus, it is important to understand how the parasite
becomes resistant to drugs and to develop strategies to
overcome resistance mechanisms. Toward this end, we
used population genetic strategies to identify genetic loci
that contribute to parasite adaptation and to identify
candidate genes involved in drug resistance. We examined
over 17,000 genetic variants across the parasite genome in
over 50 strains in which we also measured responses to
many known antimalarial compounds. We found a number
of genetic loci showing signs of recent natural selection
and a number of loci potentially involved in modulating
the parasite’s response to drugs. We further demonstrated
that one of the novel candidate genes (PF10_0355)
modulates resistance to the antimalarial compounds
halofantrine, mefloquine, and lumefantrine. Overall, this
study confirms that we can use genome-wide approaches
to identify clinically relevant genes and demonstrates
through functional testing that at least one of these
candidate genes is indeed involved in antimalarial drug
resistance.

PF10_0355 Changes Confer Antimalarial Resistance
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and ubiquitin pathways, should be viewed as candidates for

functional follow-up and further characterization.

Genome-Wide Associations with Drug Resistance
In order to directly assess the genetic basis for one important

response to antimalarial intervention, we carried out a GWAS to

identify loci associated with drug resistance in parasites. This same

approach can potentially be applied to many other clinically

relevant malaria phenotypes, e.g. host response, invasion, and

gametocyte formation. Our first step was to measure drug

resistance (IC50 values) to 13 antimalarial drugs (amodiaquine,

artemether, artesunate, artemisinin, atovaquone, chloroquine,

dihydroartemisinin, halofuginone, halofantrine, lumefantrine,

mefloquine, piperaquine and quinine) in 50 culture-adapted

parasites using a high-throughput assay (Tables S4 and S5, Text

S1, Dataset S1).

We performed the genome-wide association analysis using two

statistical tests: efficient mixed-model association (EMMA) and a

haplotype likelihood ratio (HLR) test (Figures S7, S8, S9, S10,

Methods). EMMA identifies quantitative trait associations in

individuals with complex population structure and hidden

relatedness; it has previously been shown to outperform both

PCA-based and lGC-based correction approaches in highly inbred

and structured mouse, maize, and Arabidopsis populations [15].

EMMA is particularly applicable for small and structured sample

sets: one of its first applications was in a study of 24 diploid mouse

strains [15], essentially the same sample size as in our study (50

haploid strains). The HLR test is a multi-marker test designed to

detect the association of a single haplotype with a phenotype, and

is particularly powerful when the associated haplotype experienced

recent strong selection (and is therefore long) and occurs on a low-

LD background [16]; it is therefore particularly appropriate for

this study. We addressed the effect of population structure in the

HLR test using population-specific permutation (Methods). When

used together, these two complementary approaches provide a

highly sensitive screen for association signals within the P.

falciparum genome.

The well-characterized chloroquine resistance locus, pfcrt, served

as a positive control for our GWAS methods (Figure 2A and 2C,

Table S2), an important test given our small sample size and the

limited LD present in P. falciparum. As expected, we found evidence

for association with resistance to chloroquine using both tests,

Figure 1. Parasite global population structure and genetic diversity versus divergence. (A) Population structure is visualized using the
first two principal components of genetic variation for 57 parasites. Solid circles represent individual parasites, with colors assigned by reported
origin: Africa in red, America in blue, and Asia in green. The nine strains used for ascertainment sequencing are indicated with (*). (B) Genetic diversity
(SNP p) in Senegal versus divergence (FST) between Senegal and Thailand is reported for 688 genes containing .3 successfully genotyped SNPs. Blue
diamonds: enzymes, acyl-CoA synthetases (ACS) or transporters; red diamonds: antigens, vars, rifins, stevors or surfins; gray diamonds: all other genes.
Gene IDs (PlasmoDB.org) for highlighted genes are listed in Table S7. A gene with unknown function is flagged with (*) to indicate that SNP p is off-
scale (0.014).
doi:10.1371/journal.pgen.1001383.g001
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consistent with previous studies [11]; EMMA yielded evidence for

association with genome-wide signficance, while the signal from

the HLR test fell just short of genome-wide significance

(Figure 2C).

Applying the same tests to the other drug phenotypes, we

detected numerous novel loci showing significant associations with

drug resistance (Figure 2A and 2D, Table 1). Quantile-quantile

plots for each test demonstrate that we were able to effectively

control for population structure (Figure 2B). Despite our small

sample size and the low LD in P. falciparum, in total eleven loci

achieved genome-wide significance for association with resistance

to five different drugs: amodiaquine, artemisinin, atovaquone,

chloroquine and halofantrine. In most cases, the short extent of

LD allowed localization to individual genes. Among the loci

identified were various transporters and membrane proteins, as

well as five conserved genes with unknown function (Table 1,

Dataset S1).

Functional Validation of a Novel Resistance Candidate
Demonstrating that a signal of association actually reflects a

causal molecular process requires functional testing and validation

of the candidate locus, both because of concerns about power and

reproducibility of genetic association tests, and because even a

robust statistical correlation need not imply biological causation.

To confirm the ability of GWAS to identify functionally relevant

candidates, we investigated one of our association findings,

PF10_0355, in greater depth. This gene contains multiple SNPs

associated with halofantrine resistance (Figure 2D), and encodes a

putative erythrocyte membrane protein (PlasmoDB.org) charac-

terized by high genetic diversity.

We set out to determine the role of PF10_0355 in halofantrine

resistance by transfecting halofantrine-sensitive Dd2 parasites with

episomal plasmids containing the PF10_0355 gene from a

halofantrine-resistant parasite (SenP08.04), a technique that is

used routinely for stable transgene expression [17]. Two

independent transfectants overexpressing the PF10_0355 gene

from SenP08.04 both showed reduced susceptibility to halofan-

trine when compared with the Dd2 parent or a transfection

control (Figure 3A), suggesting that this gene is indeed involved in

modulating parasite drug response.

Two independent transfectants overexpressing the endogenous

PF10_0355 gene from halofantrine-sensitive Dd2 also showed

reduced susceptibility to halofantrine (Figure 3A), however,

pointing to a role of overexpression in the observed resistance.

Because PF10_0355 is annotated as a putative erythrocyte

membrane protein and belongs to the merozoite surface protein

3/6 family, we tested the hypothesis that the observed effect was

the by-product of a growth or invasion-related process, rather than

resistance due to a direct interaction with the antimalarial itself.

To that end, we expanded our drug testing in the transfectant lines

to include other antimalarials, some structurally related and some

unrelated to halofantrine.

Figure 2. Genome-wide association study (GWAS) results. (A) Genome-wide significant associations were found for five antimalarials (out of
thirteen tested) using EMMA and HLR tests. They include pfcrt (chromosome 7) associated with chloroquine resistance and eleven novel associations
with resistance to several drugs, listed in Table 1. (B) Quantile-quantile plots for the P-value distributions in (A) show no significant confounding from
population structure. Bonferroni-corrected genome-wide significance is marked with a dashed line; Benjamini-Hochberg significance is marked with a
dotted line. (C-D) Close-ups are shown of the GWAS signal (top) and haplotypes (bottom) for resistance to (C) chloroquine (CQ) around the gene pfcrt
and (D) halofantrine (HFN) around the gene PF10_0355. Yellow: sensitive allele; red: resistant allele; Blue: no data. Isolates are ordered by IC50, with the
highest IC50 on the bottom.
doi:10.1371/journal.pgen.1001383.g002
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Overexpression of PF10_0355 from either the Dd2 or the

SenP08.04 parent caused increased resistance to the structurally

related antimalarials mefloquine and lumefantrine (Figure 3B and

3C), but had no effect on parasite susceptibility to the structurally

unrelated antimalarials chloroquine, artemisinin or atovaquone

(Figure 3D and 3E). Indeed, we found evidence of cross-resistance

between halofantrine and both mefloquine and lumefantrine

(Figure 4). We also observed cross-resistance between halofantrine

and artemisinin, which is expected as cross-resistance between

aminoquinolines and artemisinin compounds has been previously

demonstrated [11,18] and resistance to all these drugs has been

shown to be mediated by changes in pfmdr1 copy number [19,20].

Overexpression of PF10_0355, however, alters parasite suscepti-

bility to the aminoquinolines but not to artemisinin, suggesting

Table 1. Eleven genome-wide significant associations with antimalarial drug resistance.

chr SNPs test drug P-value genes PlasmoDB description

6 674,154 EMMA ATV 2.36E207 PFF0785w Ndc80 homologue, putative

7 459,787 EMMA CQ 4.72E207 MAL7P1_27 chloroquine resistance transporter

10 1,435,226, 1,435,286,
1,435,370, 1,437,695,
1,437,718, 1,441,590,
1,444,868

HLR_risk_6
(2 overlapping hits)

HFN 4.71E206,
4.25E206

PF10_0355,
PF10_0356

erythrocyte membrane protein putative, liver stage
antigen 1

11 657,349 EMMA ATV 4.01E206 PF11_0178 conserved unknown

11 738,407 EMMA HFN 7.20E207 PF11_0203 peptidase, putative

11 1,123,028, 1,124,030 HLR_risk_2 ADQ 5.26E206 PF11_0302 conserved unknown

12 1,964,935 EMMA HFN 6.15E208 PFL2285c conserved unknown

13 757,689 EMMA HFN 1.28E207 PF13_0101 conserved unknown

14 1,233,470 EMMA HFN 5.32E207 PF14_0293 conserved unknown

14 2,814,793,
2,815,714

HLR_risk_2 ARTS 4.90E206 PF14_0654 aminophospholipid transporter, putative

14 3,130,449 EMMA ATV 1.03E206 PF14_0729 early transcribed membrane protein 14.2

Positions are given with respect to the PlasmoDB 5.0 reference assembly of 3D7. Drug abbreviations are ATV: atovaquone; CQ: chloroquine; HFN: halofantrine; ADQ:
amodiaquine; ARTS: artemisinin. The HLR test for CQ-pfcrt association is just below the genome-wide significance threshold and is omitted here, but is shown in
Figure 2C.
doi:10.1371/journal.pgen.1001383.t001

Figure 3. Overexpression of PF10_0355 decreases parasite susceptibility to halofantrine (HFN) and related antimalarials. Parasite
susceptibility to six antimalarials was measured by 3H-hypoxanthine incorporation. Comparisons were made between Dd2 (HFN-sensitive strain) and
SenP08.04 (HFN-resistant strain), as well as 4 transfected lines. ‘‘Dd2+Dd2’’: Dd2 parasites overexpressing PF10_0355 from Dd2; ‘‘Dd2+P08’’: Dd2
parasites overexpressing PF10_0355 from SenP08.04. Overexpression of PF10_0355 decreases parasite susceptibility to (A) HFN and structurally
related (B) mefloquine (MFQ) and (C) lumefantrine (LUM). Overexpression of PF10_0355 does not alter parasite susceptibility to (D) chloroquine (CQ),
(E) artemisinin (ARTS) or (F) atovaquone (ATV). Mean IC50 6 standard error is shown. Significance levels: *: p,0.05, **: p,0.01, ***: p,0.001.
doi:10.1371/journal.pgen.1001383.g003
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that this effect is specific for that set of structurally related

compounds and distinct from the effect of pfmdr1, which seems to

exert a global effect of resistance to unrelated compounds (i.e. both

aminoquinolines and artemisinins). Using the Dd2 parasite line,

which has amplified pfmdr1 copy number, as a background for

PF10_0355 overexpression allowed us to distinguish between

cross-resistance to a structurally related class of compounds

(mediated by PF10_0355 overexpression) and pan-resistance to

multiple classes of drugs.

Given that overexpression of the PF10_0355 gene both from a

halofantrine-resistant and from a sensitive parasite conferred

resistance to halofantrine-related drugs, we investigated whether

gene amplification might be driving the observed resistance, as it

often does for antimalarial drugs [21–26]. We quantified

PF10_0355 copy number in our transfectants and found that the

transfectant with the highest IC50 for all three drugs (Dd2+P08B)

also had the highest PF10_0355 copy number, as measured by

quantitative PCR (qPCR) (Figure 5A). Furthermore, when we

examined the PF10_0355 gene on our SNP array, we detected a

substantial increase in hybridization intensity at the PF10_0355

locus compared to the genome average, suggesting that this gene is

amplified in some parasites (Figure 5B). The amplified region

appears only to contain the PF10_0355 gene itself and not

surrounding loci. We observed a similar pattern at pfmdr1 on

chromosome 5, where copy number variation is well established

(Figure S11). Follow-up qPCR analysis of 38 parasite lines

confirmed that parasites with amplified PF10_0355 have a greater

mean halofantrine IC50. (Figure 5C, Table S6, Dataset S1). Copy

number variation was further confirmed in a number of parasites

by quantitative Southern blotting (Figure S12).

Figure 4. Correlations between antimalarial drugs tested. (A) Pearson correlation values (r) between log10(IC50) values are rendered as a color
in a symmetric correlation matrix (red: correlated; white-uncorrelated, blue: inversely correlated). Thirteen antimalarials are measured: artemether
(ARTM), artesunate (ARTN), artemisinin (ARTS), dihydroartemisinin (DHA), halofantrine (HFN), lumefantrine (LUM), mefloquine (MFQ), quinine (QN),
chloroquine (CQ), amodiaquine (ADQ), atovaquone (ATV), piperaquine (PIP), and halofuginone (HFG). Drugs are grouped by structural relatedness.
(B–F) Correlation plots are given with a linear regression line for HFN compared to the 5 other drugs tested for antimalarial resistance with PF10_0355
overexpression: (B) LUM, (C) MFQ, (D) ATV, (E) CQ, and (F) ARTS.
doi:10.1371/journal.pgen.1001383.g004
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Figure 5. Copy number variation at PF10_0355 is associated with HFN resistance. (A) Mean PF10_0355 copy number (6 standard deviation
for three replicates) in the parent Dd2 and transfected lines from qPCR analysis. Dd2+Dd2: Dd2 parasites overexpressing PF10_0355 from HFN-
sensitive Dd2; Dd2+P08: Dd2 parasites overexpressing PF10_0355 from HFN-resistant SenP08.04. Copy number was compared to the reference locus
PF07_0076. (B) Increased hybridization intensity at PF10_0355 on the high-density SNP array, measured by Z-scores for normalized and background-
corrected data, for the HFN-resistant isolate SenP19.04. (C) Strains with increased copy number of PF10_0355 (as measured by qPCR .1.2x 3D7) show
a significantly higher resistance to HFN (p = 0.02, Student t-test).
doi:10.1371/journal.pgen.1001383.g005
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Discussion

In this study we used natural selection and genome-wide

association methods to probe the genetic basis of adaptation in P.

falciparum. These approaches are complementary: scanning for

selected loci permits an unbiased search for unknown adaptive

changes, but provides little information about the processes at

work, while GWAS gives a focused look at one easily identified

(and clinically critical) adaptive phenotype. Results from both

approaches open up new avenues for study, as we seek to

understand the biological significance of the findings.

The specifics of our strategy were designed to cope with two

potential limitations in applying genome-wide population genetic

approaches to malaria: small sample sizes, due to the difficulty in

adapting parasites to culture and assessing drug and other

phenotypes; and a lack of correlation (LD) between nearby

variants in the parasite genome, which limits our ability to infer

untyped SNPs from genotyped markers. The second limitation we

addressed by developing a high-density genotyping array (based on

new sequencing), to increase the fraction of genetic variation that

we could directly interrogate, while the effect of the first was

mitigated by the phenotype we targeted in our GWAS.

Drug resistance is a phenotype well-suited for GWAS because it

is expected to be caused by common alleles of large effect at few

genomic loci [27]. If this is the case, associations will be much

easier to detect than in a typical human GWAS, in which the

phenotype is caused by alleles at many loci that are either rare or

of small effect. Additionally, the haploid nature of the intra-

erythrocytic stage of P. falciparum further heightens GWAS power

by eliminating the issue of allelic dominance. Finally, the increased

LD caused by recent selection for drug resistance counteracts the

loss of power that comes from short LD, small sample size, and the

temporal and geographic stratification of the parasite population

that we examined. Thus, despite the potential limitations, we were

able to detect a known drug resistance locus (pfcrt), observed little

P-value inflation in our GWAS data (Figures S8, S9, S10), and

identified a number of genome-wide significant loci associated

with drug resistance. Part of this success was likely due to specific

tests we used to account for population structure.

Going beyond these statistical tests, we went on to functionally

validate one of these loci, demonstrating that increased PF10_0355

copy number confer resistance to three structurally related

antimalarial drugs. This demonstrates the feasibility of coupling

GWAS and functional testing in the malaria parasite for

identifying and validating novel drug resistance loci and illustrates

the power of GWAS to find functionally important alleles.

Comparing our results to the recent GWAS described by Mu, et

al. [11], which was also directed at finding drug-resistance loci, we

see that, beyond the well-known pfcrt locus, there was no overlap

between the associations identified by each study. Differing sets of

drugs tested and analytical methods explain much of the

disagreement. Of the eleven candidate associations in Table 1,

one (that with pfcrt) was found by both studies, eight were

associations with drugs not assayed in Mu, et al. (atovaquone and

halofantrine), and two were found only with a haplotype-based

test, an approach not used by Mu, et al. Our candidate locus at

PF10_0355, in fact, would not have been detectable in the Mu

study because it was identified only by the multi-marker HLR test,

because it involved an association with halofantrine, and because

the Mu, et al. genotyping array lacked markers within 4 kb of the

gene (plasmoDB.org).

Different parasite populations and marker sets probably explain

many of the dihydroartemisinin, mefloquine and quinine associ-

ations identified by Mu, et al. but not seen in our data set. The

studies used different parasite population sets—theirs was

weighted toward southeast Asian strains, and ours toward African

strains—and selection pressures and selected alleles can both vary

between populations. Our smaller sample size also means that we

might lack power to identify some associations accessible to Mu, et

al. These difficulties are reflected in human GWAS studies as well,

where the ability to replicate associations using multiple tests and

in different sample sets has also been challenging to achieve [28].

Ultimately, the disparities in loci identified point to the role of

population analysis as a tool for candidate gene discovery and not

as a definitive study. Even within each study, there is little overlap

between the signals observed with different methods—our study

detects only one gene (pfcrt) by both GWAS tests (EMMA and

HLR), while Mu, et al. detected only two genes (unknowns, not

pfcrt) by both of their GWAS tests (Eigensoft and PLINK). Even a

well-designed GWAS serves only as a hypothesis-generating

experiment, and it is vital to empirically validate candidate loci

associated with a phenotype of interest. Especially given the small

sample sizes and relatively sparse marker density used in both

malaria GWAS studies to date, functional validation of candidates

is necessary to address concerns about false positive results.

Our functional result, that increased PF10_0355 copy number

confers decreased susceptibility to halofantrine, mefloquine and

lumefantrine, raises additional questions for study. Further work

will be needed to determine the precise contributions of copy

number variation and gene mutation to the parasite’s response to

these drugs. The biological function of this gene’s product is

unknown, but previous work indicates putative localization to the

parasite surface [29], as well as it being a potential target of host

immunity and balancing selection [30]. While the protein itself

does not appear to be a transporter, it is possible that it directly

binds drug or perhaps couples with transport proteins to modulate

drug susceptibility; interaction between membrane transporters

and non-channel proteins has been demonstrated in cancer, plant

and yeast systems [31–33]. Additional experiments are certainly

required to determine the precise role of PF10_0355 in

modulating parasite response to this class of compounds, including

assessing its relevance to resistance in natural populations, but it is

clear that alteration of this locus can mediate drug resistance in P.

falciparum.

Although halofantrine, mefloquine and lumefantrine are not

commonly used as primary interventions, widespread halofantrine

use has recently been documented in West Africa. Notably,

halofantrine was used to treat nearly 18 million patients between

1988 and 2005 [34,35], and it remains in production and use

today. Use of halofantrine, mefloquine or lumefantrine as

monotherapy may further explain how mutations and copy

number variation in the PF10_0355 gene were selected.

Lumefantrine is also currently used as a partner drug in the

artemisinin-based combination therapy (ACT) Coartem. The

shorter half-life of artemether allows lumefantrine to be present

as monotherapy, making it vulnerable to selection of drug resistant

mutants. As genetic loci associated with drug responses are

identified and validated, these provide new molecular biomarkers

to evaluate drug use and response in malaria endemic settings.

Thus, our findings have implications for defining molecular

biomarkers for monitoring partner drug responses as intervention

strategies, such as ACTs, are applied.

Beyond identifying a novel drug resistance locus, this study

illustrates the general utility of a GWAS approach for the

discovery of gene function in P. falciparum. Even with a small

and geographically heterogeneous sample of parasites, we

identified a number of new loci associated with drug response

and validated one of them. Larger samples from a single
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population will have much greater power to detect additional loci,

including those where multiple and low frequency alleles

contribute to resistance. Future GWAS have the potential both

to provide greater insights into basic parasite biology and to

identify biomarkers for drug resistance and other clinically relevant

phenotypes like acquired protection, pathogenesis, and placental

malaria.

Future GWAS will be able to counteract the loss of power

caused by low LD, either by focusing on parasite populations with

reduced outcrossing rates, or by studying cases of very strong

selective pressure. This issue will soon become moot, however, as

the declining cost of whole-genome sequencing makes it practical

to assay every nucleotide in the genome on a routine basis.

Culture-adapted parasites are amenable to robust and reproduc-

ible phenotypic characterization, but their limitations—the

potential for artifactual mutations during adaptation and for a

biased selection of clones within a given infection—mean that

genetic changes identified using them require both functional

validation and demonstration that the changes are important

during natural infection. As direct sequencing of clinical isolates

with demonstrable clinical phenotypes such as ex vivo drug response

or invasion properties becomes increasingly feasible, sequencing

will enable us to directly identify genetic changes in the parasite

associated with clinically relevant phenotypes. In the years ahead,

genome analysis of P. falciparum has the potential to identify genetic

loci associated with many phenotypes, enhance our understanding

of the biology of this important human pathogen, and inform the

development of diagnostic and surveillance tools for malaria

eradication.

Methods

Parasites, Drug Testing, and DNA Isolation
Parasite samples and origins are detailed in Text S1 and Table

S1. Parasites were maintained by standard methods [36] and were

tested for their response to amodiaquine, artemether, artesunate,

artemisinin, atovaquone, chloroquine, dihydroartemisinin, halo-

fuginone, halofantrine, lumefantrine, mefloquine, piperaquine and

quinine according to the methods outlined by Baniecki, et al. [37]

(Table S4, Figure S13, Text S1). Follow-up drug testing was done

by measuring uptake of 3H-hypoxanthine [38]. Nucleic acids were

obtained from parasite cultures using Qiagen genomic-tips

(Qiagen, USA). All DNA samples were evaluated by molecular

barcode [39].

Array Genotyping
We sequenced nine geographically diverse parasite isolates to

1.25x coverage, nearly doubling the number of publicly available

SNPs to 111,536 (Text S1). These parasites had been previously

sequenced to 0.25x coverage [2] and the deeper sequencing

allowed for more thorough SNP discovery. Using this combined

marker set, we created a high-density Affymetrix-based SNP array

for P. falciparum containing 74,656 markers. Arrays were

hybridized to 57 independent parasite samples (Table S1),

including 17 previously sequenced strains used as a validation

set. Genotype calls were produced using the BRLMM-P algorithm

[40]. Markers that did not demonstrate perfect concordance

between sequence and array data for the 17 strains were removed

(Text S1). The remaining 17,582 SNPs constituted the high-

confidence marker set used throughout this study (median marker

spacing 444 bp, mean spacing 1,316 bp). All genomic positions

and translation consequences are listed with respect to the

PlasmoDB 5.0 assembly and annotation. SNP genotype data are

publicly available on plasmodb.org (release 6.0, July 2009) and

dbSNP (Build B134, May 2011), accessible by searching for

submission batches Pf_0002 (sequencing of nine isolates) and

Pf_0003 (genotyping of 57 isolates) from submitter BROAD-

GENOMEBIO. Genotype data is also available as Dataset S2.

Principal Component Analyses
Principal components analysis (PCA) was performed using the

program SmartPCA [41]. All single-infection samples were used

for the analysis in Figure 1. Samples that tightly clustered with the

wrong continental population (A4, Malayan Camp and T2_C6)

represented likely cases of contamination and were thus omitted

from all other analyses.

Diversity/Divergence Analysis
We measured diversity using a statistic we term ‘SNP p,’ which

quantifies the average number of pair-wise differences among

samples from a given population at assayed SNPs. Population

divergence was measured using FST, calculated using the method of

Hudson, et al. [42]. Statistical evaluation of the significance of

differences in SNP p and FST among populations was performed

using a bootstrapping approach, where the SNP set was re-sampled

with replacement and each statistic recomputed 1000 times.

Linkage Disequilibrium (LD) Analysis
The statistic r2 was calculated within each population for all

pairs of SNPs sharing the same chromosome [43]; pairs were

binned by distance and averaged within each bin. The level of LD

between unlinked markers was estimated by calculating r2 between

all pairs of SNPs on different chromosomes. To determine the bias

caused by small sample size, the unlinked calculation was

repeated, with the change that for each pair of SNPs, the

genotype for one was taken from one strain while the genotype for

the second was taken from another strain. This background value

of r2 was calculated separately for the possible pairs of different

strains and then averaged. Only single infections, as assessed by

molecular barcode, were used.

Long Range Haplotype (LRH) Analysis
Because of the small number of samples, LRH results for

individual continental populations had a high level of variance.

Thus, we pooled together samples from Africa (n = 26) and Asia

(n = 18, excluding India), as suggested by our PCA analysis. SNPs

included in the analysis had a minor allele frequency of at least

0.05 and a call rate of at least 0.8; missing genotypes were imputed

using PHASE. LRH analysis was performed using Sweep. Each

SNP defined two core alleles, one base pair in length. We

calculated relative extended haplotype homozygosity (REHH) for

each core allele, to its left and right [44], yielding up to four

REHH scores per SNP locus. We standardized the REHH scores

as a function of core allele frequency, defined on a discrete grid

from 0.05 to 0.95 with even spaces of 0.025. This yielded a

normally-distributed set of Z-scores for which we calculated

corresponding P-values and Q-values.

Genome-Wide Association Study (GWAS)
We performed a GWAS for drug resistance to thirteen

antimalarials across 50 of our genotyped samples. 7,437 SNPs

that had a minor allele count of five samples as well as an 80% call

rate under every phenotype condition were used for GWAS. A

Bonferroni significance threshold of –log10(P-value) .5.17 was

used for all tests. See Text S1 for more details on GWAS methods.

The Efficient Mixed-Model Association (EMMA) test [15]

models quantitative trait associations to a data set with complex
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population structure and hidden relatedness. It calculates a

genotype similarity matrix instead of discrete categories and does

not require a priori specification of populations. The resulting P-

value distributions demonstrate little remaining effect from

population structure (Figure S8) while retaining power to find a

number of associations at genome-wide significance (Figure S8,

Figure 2A, Table 1).

The Haplotype Likelihood Ratio (HLR) test [16] models the

likelihood that a single, resistant haplotype rose to dominance

while all other haplotypes proportionally decreased. PLINK [45] is

used to produce sliding window haplotypes across the genome and

calculate haplotype frequencies for input to the HLR test. We

produced input for all 2-, 4- and 6-marker windows. The LOD

scores generated by the HLR test were converted to empirical

pointwise P-values by performing approximately 370,000 permu-

tations of the null model for each test condition, allowing us to

calculate empirical P-values up to a significance of 1025.6. We

preserved population-specific phenotype frequencies by permuting

only within each of three populations defined by our PCA analysis

(Table S1). Resulting P-value distributions fit expectations well for

the vast majority of test conditions (Figures S9, S10) and the test

demonstrates power to detect a number of loci at genome-wide

significance (Figure 2A, Table 1).

Copy Number Variation (CNV)
Copy number was assessed by evaluating the hybridization

intensity at the PF10_0355 locus on the high-density SNP array

(Text S1). Follow-up analyses were done by quantitative real-time

PCR (qPCR) of the PF10_0355 locus using the Delta Delta Ct

method [46]. PF10_0355 was compared to the reference locus

PF07_0076 and 3D7 was used as a reference strain. A summary of

PF10_0355 copy number for all parasite strains tested is provided

in Table S6. Select resistant strains that were found to have

multiple copies of PF10_0355 were further analyzed by quanti-

tative Southern blotting and PF10_0355 copy number was

compared to the dhps gene from the 3D7 strain [47].

PF10_0355 Overexpression
The full length ORF of PF10_0355 was amplified from either

the Dd2 (HFN sensitive) or SenP08.04 (HFN resistant) parasite

isolate and cloned into the pBIC009 plasmid under the expression

of the Hsp86 promoter. Plasmid DNA was isolated, tranfected into

the Dd2 parasite strain and stable transfectants were selected with

2.5 nM WR99210 [48]. Parasites from two independent experi-

ments for each vector type (Dd2+Dd2 and Dd2+SenP08.04) were

isolated and successful transfection was confirmed by plasmid

rescue as well as episome-specific PCR and sequencing. Addition-

ally, a vector control strain was made by transfecting Dd2 parasites

with the pBIC009 plasmid containing the firefly luciferase gene

(EC 1.13.12.7).

Supporting Information

Dataset S1 Drug data, PF10_0355 copy number data, and top

GWAS and LRH hits.

Found at: doi:10.1371/journal.pgen.1001383.s001 (0.06 MB

XLS)

Dataset S2 Genotype data. Tab separated text file containing

genotype data for 57 isolates across 17,582 SNPs. Additional

information such as translation consequences (based on PlasmoDB

v5.0 annotations) are also provided.

Found at: doi:10.1371/journal.pgen.1001383.s002 (3.29 MB

TXT)

Figure S1 Principal components analysis of population structure

within A) Africa B) the Americas, and C) Asia. Plots of the first two

principal components using Eigenstrat [16] using the Affymetrix

array. Each solid circle represents an individual, and the color is

assigned according to the reported origin.

Found at: doi:10.1371/journal.pgen.1001383.s003 (0.56 MB

DOC)

Figure S2 Linkage disequilibrium (LD), measured by r2, for

each of the three population samples (Senegal, Thailand, Brazil).

Plotted are r2 for linked markers (red lines) and for unlinked

markers (blue lines), as well as the level of background LD

expected because of small sample size (green lines).

Found at: doi:10.1371/journal.pgen.1001383.s004 (0.06 MB

DOC)

Figure S3 Genes were classified by gene ontology (GO)

functional categories and stratified by level of nucleotide diversity

(p) as estimated by Z-scores. Select categories (highest five and

lowest five categories along with categories in between that differ

by incremental Z-scores) are shown. The majority of genes in GO

categories for molecules found at the cell membrane have high

levels of nucleotide diversity, while most of the genes classified into

GO categories for conserved molecules lack nucleotide diversity.

Found at: doi:10.1371/journal.pgen.1001383.s005 (0.51 MB

DOC)

Figure S4 SNP diversity and divergence by translation conse-

quence. Diversity at assayed SNPs (SNP p) and Divergence

between different populations as assayed by FST, for different

classes of SNPs: intergenic (4,263 SNPs), intronic (584 SNPs),

synonymous (3,957 SNPs), and nonsynonymous (8,778 SNPs).

Intronic SNPs have the widest error bars due to their relative

sparseness on the array. Non-synonymous SNPs are generally

among the least diverse and most differentiated class of SNPs.

Found at: doi:10.1371/journal.pgen.1001383.s006 (1.58 MB EPS)

Figure S5 Relative extended haplotype homozygosity (REHH)

scores. Relative extended haplotype homozygosity (REHH) scores

prior to any normalization, plotted for each core allele, (A) indexed

by chromosome and position, and colored by chromosome, and

(B) as a function of core allele frequency.

Found at: doi:10.1371/journal.pgen.1001383.s007 (0.61 MB

DOC)

Figure S6 Long-range haplotype (LRH) analysis yields genome-

wide significant candidates for recent positive selection. For each

core allele, we calculated relative extended haplotype homozygos-

ity (REHH), and from the set of all REHH scores we calculated a

corresponding distribution of Q-values. We plotted -log10(Q-value),

for all Q-values ,1, for each core allele, indexed by chromosome

and position, and colored by chromosome. The red dotted line

corresponds to the typical Q-value significance threshold of 0.05.

Gene annotations from PlasmoDB.org for some significant scores

are labeled. For comparison, the well-known sweeps around drug

resistance loci pfcrt and dhfr are labeled. This data is also shown in

tabular form in Table S3.

Found at: doi:10.1371/journal.pgen.1001383.s008 (0.23 MB TIF)

Figure S7 GWAS P-value distributions for Fisher’s exact test,

permuted Fisher’s exact test, and Cochran-Mantel-Haenszel

(CMH) tests. Quantile-quantile plots (qq-plots) show log P-values

for every SNP on the y axis against the null expectation on the x

axis. Fisher’s exact test results generally show P-value inflation due

to confounding effects from population structure for many drugs

("Fish"). As such, no results from this test are reported. To account

for population structure, permutations of the null distribution were
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performed while preserving phenotypic associations to three

predefined population clusters ("Fishp"). CMH also performs a

stratified association test given predefined population clusters

("CMH"). The permuted Fisher’s test and CMH test results show

appropriate correction for population structure, but show no hits

at genome-wide significance to report.

Found at: doi:10.1371/journal.pgen.1001383.s009 (0.47 MB TIF)

Figure S8 GWAS results for the Efficient Mixed-Model Associ-

ation (EMMA) test. QQ-plots show little to no confounding effect

from population structure, with the possible exception of artesunate

(ARTN). The significant ARTN result is not reported in Table 1 or

Figure 2 for this reason. Manhattan plots depict the genomic

location of significant hits, also reported in Table 1 and Figure 2.

Found at: doi:10.1371/journal.pgen.1001383.s010 (0.61 MB TIF)

Figure S9 GWAS P-value distributions for the Haplotype

Likelihood Ratio (HLR) tests for association for drug resistance.

Population-sensitive permutations of the null model were used to

calculate P-values from LOD scores. Final distributions of P-values

show little to no confounding effect from population structure for

most tests. Exceptions include the 6-SNP artemether (HLR_ris-

k_6_ARTM) test and the 4-SNP amodiaquine (HLR_ris-

k_4_ADQ) test--these results are not reported in Table 1 or

Figure 2. Manhattan plots for other tests that reached genome-

wide significance are in Figure 2A.

Found at: doi:10.1371/journal.pgen.1001383.s011 (3.52 MB TIF)

Figure S10 GWAS P-value distributions for Haplotype Likeli-

hood Ratio (HLR) tests for association for drug sensitivity.

Population-sensitive permutations of the null model were used to

calculate P-values from LOD scores. Final distributions of P-values

show little to no confounding effect from population structure.

Genome-wide significant hits include piperaquine (HLR_pro-

tect_4_PIP) on a haplotype that spans PF07_0126, PF07_0127

and MAL7P1_167 and amodiaquine (HLR_protect_4_ADQ) on a

haplotype in PFL1800w. A chloroquine hit on pfcrt just misses

genome-wide significance. These results are not reported in Table 1.

Found at: doi:10.1371/journal.pgen.1001383.s012 (3.51 MB TIF)

Figure S11 Intensity Z-score for the Affymetrix array across

chromosome 5. The results illustrate that probes for many of the

SNPs assayed within the pfmdr1 (888-988 k) locus exhibit notably

higher hybridization intensity values in Dd2 relative to the other

parasites, with 13 assays exhibiting average intensities greater than

2 standard deviations higher than observed in other strains. This is

consistent with the copy number variation reported in the pfmdr1

locus, with 3–4 copies present in the Dd2 strain relative to a

collection of other strains.

Found at: doi:10.1371/journal.pgen.1001383.s013 (0.35 MB

DOC)

Figure S12 PF10_0355 copy number variation measured by

Southern blotting. Select parasite isolates were digested with

AflIII, EcoRV and XbaI and fragments were detected using

probes to portions of the PF10_0355 and dhps genes. Primers used

for making probes were: dhps F: 59-GTG ATT GTG TGG ATC

AGA AGA TGA ATA ATC-39; R: 59-GGA TTA GGT ATA

ACA AAA GGA CCA GAG G-39; PF10_0355 F: 59-GGG GAA

AGC ATA TAA TAA TAC TAT AGA TGC-39; R: 59-CTT

GGA GGA ACA AGA ACC CCC TTA TTA TCA-39

Radioactivity was measured using a phosphorimager plate and

quantified using Quantity One software (version 4.6.5). Halofan-

trine (HFN) response is listed as sensitive (S) or resistant (R) for

each strain.

Found at: doi:10.1371/journal.pgen.1001383.s014 (0.07 MB

DOC)

Figure S13 Drug resistance phenotype classification for sweep

and GWAS analyses. IC50 data were collected for thirteen anti-

malarial drugs against all genotyped parasite lines. Quantitative

IC50s were converted into binary "sensitive" and "resistant"

phenotypes at the cutoffs shown (see also Table S4). These binary

phenotypes were only used for the Haplotype Likelihood Ratio

(HLR) test. Drug abbreviations: amodiaquine (ADQ), artemether

(ARTM), artesunate (ARTN), artemisinin (ARTS), atovaquone

(ATV), chloroquine (CQ), dihydroartemisinin (DHA), halofugi-

none (HFG), halofantrine (HFN), lumefantrine (LUM), mefloquine

(MFQ), piperaquine (PIP) and quinine (QN).

Found at: doi:10.1371/journal.pgen.1001383.s015 (1.44 MB EPS)

Table S1 63 parasites used in the study with the name (parasite),

geographic origin (region, country), source, and molecular barcode

[8], as well as which samples were included in SNP discovery

(SEQ), population characterization (POP), long-range haplotype

(LRH), and GWAS analyses. For GWAS, * indicates that the

sample was used, but not included in any population cluster for

stratified or permuted analyses. The human control sample and

the ancestral P. reichenowi sample were not used in any analyses

reported here.

Found at: doi:10.1371/journal.pgen.1001383.s016 (0.12 MB

DOC)

Table S2 Analysis of the ability of SNPs on the array to act as a

proxy for or. This ability is measured using the standard

correlation metric r2. In our data set, 28% of SNPs in the

Brazilian sample (which has the most LD) had a nearby SNP on

the array in strong LD (r2.0.5) with it, while in the Senegal

sample the proportion was only 16%. Most of the time, therefore,

we will only be able to detect association with markers that have

been directly typed. The exception is strong selective sweeps,

which affect many markers within a region.

Found at: doi:10.1371/journal.pgen.1001383.s017 (0.18 MB

DOC)

Table S3 Long Range Haplotype (LRH) hits. All REHH hits

with Q-value ,0.25.

Found at: doi:10.1371/journal.pgen.1001383.s018 (0.19 MB

DOC)

Table S4 IC50 drug resistance phenotype data (nM). ND: No

data.

Found at: doi:10.1371/journal.pgen.1001383.s019 (0.12 MB

DOC)

Table S5 Parasites used in the GWAS. Parasites used, indicating

their nucleotide and amino acid sequence for various positions

(indicated by number) in the dhfr, pfcrt, and pfmdr1 gene loci.

Found at: doi:10.1371/journal.pgen.1001383.s020 (0.24 MB

DOC)

Table S6 PF10_0355 copy number summary for 38 parasites

tested by qPCR using the Delta Delta Ct method. Copy number

(CN) was compared to the reference locus PF07_0076 and 3D7

was used as a reference strain. A cut-off of 1.4 was used to define

PF10_0355 copy number greater than 1; parasites with greater

than 1 copy of PF10_0355 are shaded. Parasites are ranked by

Halofantrine (HFN) IC50: HFN-sensitive parasites are indicated by

an S and HFN-resistant parasites are indicated by an R.

Found at: doi:10.1371/journal.pgen.1001383.s021 (0.08 MB

DOC)

Table S7 Annotation and GeneID Information for identified

genes in Figure 1B.

Found at: doi:10.1371/journal.pgen.1001383.s022 (0.05 MB

DOC)
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Text S1 Supplemental methods.

Found at: doi:10.1371/journal.pgen.1001383.s023 (1.29 MB PDF)
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