9 research outputs found

    Immune responses and clinical outcomes after COVID-19 vaccination in patients with liver disease and liver transplant recipients

    Get PDF
    Background &amp; Aims: Comparative assessments of immunogenicity following different COVID-19 vaccines in patients with distinct liver diseases are lacking. SARS-CoV-2-specific T-cell and antibody responses were evaluated longitudinally after one to three vaccine doses, with long-term follow-up for COVID-19-related clinical outcomes. Methods: A total of 849 participants (355 with cirrhosis, 74 with autoimmune hepatitis [AIH], 36 with vascular liver disease [VLD], 257 liver transplant recipients [LTRs] and 127 healthy controls [HCs]) were recruited from four countries. Standardised immune assays were performed pre and post three vaccine doses (V1-3). Results: In the total cohort, there were incremental increases in antibody titres after each vaccine dose (p &lt;0.0001). Factors associated with reduced antibody responses were age and LT, whereas heterologous vaccination, prior COVID-19 and mRNA platforms were associated with greater responses. Although antibody titres decreased between post-V2 and pre-V3 (p = 0.012), patients with AIH, VLD, and cirrhosis had equivalent antibody responses to HCs post-V3. LTRs had lower and more heterogenous antibody titres than other groups, including post-V3 where 9% had no detectable antibodies; this was heavily influenced by intensity of immunosuppression. Vaccination increased T-cell IFNγ responses in all groups except LTRs. Patients with liver disease had lower functional antibody responses against nine Omicron subvariants and reduced T-cell responses to Omicron BA.1-specific peptides compared to wild-type. 122 cases of breakthrough COVID-19 were reported of which 5/122 (4%) were severe. Of the severe cases, 4/5 (80%) occurred in LTRs and 2/5 (40%) had no serological response post-V2. Conclusion: After three COVID-19 vaccines, patients with liver disease generally develop robust antibody and T-cell responses to vaccination and have mild COVID-19. However, LTRs have sustained no/low antibody titres and appear most vulnerable to severe disease. Impact and implications: Standardised assessments of the immune response to different COVID-19 vaccines in patients with liver disease are lacking. We performed antibody and T-cell assays at multiple timepoints following up to three vaccine doses in a large cohort of patients with a range of liver conditions. Overall, the three most widely available vaccine platforms were immunogenic and appeared to protect against severe breakthrough COVID-19. This will provide reassurance to patients with chronic liver disease who were deemed at high risk of severe COVID-19 during the pre-vaccination era, however, liver transplant recipients had the lowest antibody titres and remained vulnerable to severe breakthrough infection. We also characterise the immune response to multiple SARS-CoV-2 variants and describe the interaction between disease type, severity, and vaccine platform. These insights may prove useful in the event of future viral infections which also require rapid vaccine development and delivery to patients with liver disease.</p

    Immune responses and clinical outcomes after COVID-19 vaccination in patients with liver disease and liver transplant recipients

    Get PDF
    Background &amp; Aims: Comparative assessments of immunogenicity following different COVID-19 vaccines in patients with distinct liver diseases are lacking. SARS-CoV-2-specific T-cell and antibody responses were evaluated longitudinally after one to three vaccine doses, with long-term follow-up for COVID-19-related clinical outcomes. Methods: A total of 849 participants (355 with cirrhosis, 74 with autoimmune hepatitis [AIH], 36 with vascular liver disease [VLD], 257 liver transplant recipients [LTRs] and 127 healthy controls [HCs]) were recruited from four countries. Standardised immune assays were performed pre and post three vaccine doses (V1-3). Results: In the total cohort, there were incremental increases in antibody titres after each vaccine dose (p &lt;0.0001). Factors associated with reduced antibody responses were age and LT, whereas heterologous vaccination, prior COVID-19 and mRNA platforms were associated with greater responses. Although antibody titres decreased between post-V2 and pre-V3 (p = 0.012), patients with AIH, VLD, and cirrhosis had equivalent antibody responses to HCs post-V3. LTRs had lower and more heterogenous antibody titres than other groups, including post-V3 where 9% had no detectable antibodies; this was heavily influenced by intensity of immunosuppression. Vaccination increased T-cell IFNγ responses in all groups except LTRs. Patients with liver disease had lower functional antibody responses against nine Omicron subvariants and reduced T-cell responses to Omicron BA.1-specific peptides compared to wild-type. 122 cases of breakthrough COVID-19 were reported of which 5/122 (4%) were severe. Of the severe cases, 4/5 (80%) occurred in LTRs and 2/5 (40%) had no serological response post-V2. Conclusion: After three COVID-19 vaccines, patients with liver disease generally develop robust antibody and T-cell responses to vaccination and have mild COVID-19. However, LTRs have sustained no/low antibody titres and appear most vulnerable to severe disease

    Ultrasound for the evaluation of soft tissue foreign bodies before and after the addition of fluid to the surrounding interstitial space in a cadaveric model

    No full text
    © 2016 Elsevier Inc. Background Point-of-care ultrasound may be used to facilitate foreign body (FB) localization and removal. We hypothesized that injection of normal saline adjacent to an FB may make it easier to detect. Methods The study was performed on one embalmed human cadaver. Potential FB sites were created of wood (24), metal (24), and null (24). Two sonographers evaluated each of the 72 sites both before and after a 25-gauge needle was inserted into each incision and 3 cc of normal saline was injected. Accuracy, sensitivity, and specificity were calculated both before and after injection of normal saline. Binomial tests were used to determine the statistical significance of FB detection before and after injection. A 2-tailed Student\u27s t test was used to determine if there was a statistically significant difference between the 2 methods. Results Preinjection, 116 (81%) of the 144 interpretations (P ≤.001) were correct in their assessment of whether or not an FB was present, with a sensitivity of 81% (95% confidence interval [CI], 72%-88%) and a specificity of 79% (95% CI, 65%-90%). Postinjection, 119 (83%) of these 144 interpretations (P ≤.001) were correct in their assessment of whether or not an FB was present, with a sensitivity of 85% (95% CI, 77%-92%) and a specificity of 77% (95% CI, 63%-88%). This difference was not significant (P = .08; 95% CI, − 0.04 to 0.01). Discussion Ultrasound was reasonably accurate, sensitive, and specific in identifying 1-cm metal and wood FBs. Although accuracy and sensitivity did improve after normal saline injection, this difference was not significant

    A workflow task force affects emergency physician compliance for point-of-care ultrasound documentation and billing

    No full text
    Abstract Background Emergency point-of-care ultrasound (POC u/s) is an example of a health information technology that improves patient care and time to correct diagnosis. POC u/s examinations should be documented, as they comprise an integral component of physician decision making. Incomplete documentation prevents coding, billing and physician group compensation for ultrasound-guided procedures and patient care. We aimed to assess the effect of directed education and personal feedback through a task force driven initiative to increase the number of POC u/s examinations documented and transferred to medical coders by emergency medicine physicians. Methods Three months before a chosen go-live date, departmental leadership, the ultrasound division, and residents formed a task force. Barriers to documentation were identified through brain storming and email solicitation. The total number and application-specific POC u/s examinations performed and transferred to the healthcare record and medical coders were compared for the pre- and post-task force intervention periods. Chi square analysis was used to determine the difference between the number of POC u/s examinations reported before and after the intervention. Results A total of 1652 POC u/s examinations were reported during the study period. Successful reporting to the patient care chart and medical coders increased from 41 % pre-task force intervention to 63 % post-intervention (p value 0.000). The number of scans performed during the 3-month periods (pre-intervetion, post-intervention 0–3 months, post-intervention 3–6 months) was similar (521, 594 and 537). When analyzed by specific application, the majority showed a statistically significant increase in the percentage of examinations reported, including those most critical for patient care decision making: (EFAST (41 vs. 64 %), vascular access (26 vs. 61 %), and cardiac (43 vs. 72 %); and those most commonly performed: biliary (44 vs. 61 %) and pelvic (60 vs. 66 %). Of the POC u/s studies coded and reported for reimbursement, 15.9 % were billed before intervention and 32 % were billed after intervention (p value: 0.000). Conclusions The formation of a workflow solution task force positively affected emergency physician compliance with POC u/s documentation for coding and billing over a 6-month period. Further investigation should assess the long-term effect of the intervention and whether this translates into increased revenue to the department

    An integrated pan-tropical biomass map using multiple reference datasets

    Get PDF
    We combined two existing datasets of vegetation aboveground biomass (AGB) (Proceedings of the National Academy of Sciences of the United States of America, 108, 2011, 9899; Nature Climate Change, 2, 2012, 182) into a pan-tropical AGB map at 1-km resolution using an independent reference dataset of field observations and locally calibrated high-resolution biomass maps, harmonized and upscaled to 14 477 1-km AGB estimates. Our data fusion approach uses bias removal and weighted linear averaging that incorporates and spatializes the biomass patterns indicated by the reference data. The method was applied independently in areas (strata) with homogeneous error patterns of the input (Saatchi and Baccini) maps, which were estimated from the reference data and additional covariates. Based on the fused map, we estimated AGB stock for the tropics (23.4 N–23.4 S) of 375 Pg dry mass, 9–18% lower than the Saatchi and Baccini estimates. The fused map also showed differing spatial patterns of AGB over large areas, with higher AGB density in the dense forest areas in the Congo basin, Eastern Amazon and South-East Asia, and lower values in Central America and in most dry vegetation areas of Africa than either of the input maps. The validation exercise, based on 2118 estimates from the reference dataset not used in the fusion process, showed that the fused map had a RMSE 15–21% lower than that of the input maps and, most importantly, nearly unbiased estimates (mean bias 5 Mg dry mass ha−1 vs. 21 and 28 Mg ha−1 for the input maps). The fusion method can be applied at any scale including the policy-relevant national level, where it can provide improved biomass estimates by integrating existing regional biomass maps as input maps and additional, country-specific reference datasets
    corecore