265 research outputs found

    Adsorption of para-Hydrogen on Krypton pre-plated graphite

    Full text link
    Adsorption of para-Hydrogen on the surface of graphite pre-plated with a single layer of atomic krypton is studied thoretically by means of Path Integral Ground State Monte Carlo simulations. We compute energetics and density profiles of para-hydrogen, and determine the structure of the adsorbed film for various coverages. Results show that there are two thermodynamically stable monolayer phases of para-hydrogen, both solid. One is commensurate with the krypton layer, the other is incommensurate. No evidence is seen of a thermodynamically stable liquid phase, at zero temperature. These results are qualitatively similar to what is seen for for para-hydrogen on bare graphite. Quantum exchanges of hydrogen molecules are suppressed in this system.Comment: 12 pages, 6 figures, to appear in the proceedings of "Advances in Computational Many-Body Physics", Banff, Alberta (Canada), January 13-16 200

    Alpha-synuclein (SNCA) polymorphisms exert protective effects on memory after mild traumatic brain injury

    Get PDF
    Problems with attention and short-term learning and memory are commonly reported after mild traumatic brain injury (mTBI). Due to the known relationships between α-synuclein (SNCA), dopaminergic transmission, and neurologic deficits, we hypothesized that SNCA polymorphisms might be associated with cognitive outcome after mTBI. A cohort of 91 mTBI patients one month after injury and 86 healthy controls completed a series of cognitive tests assessing baseline intellectual function, attentional function, and memory, and was genotyped at 13 common single nucleotide polymorphisms (SNPs) in the SNCA gene. Significant differences in two memory measures (p = 0.001 and 0.002), but not baseline intellectual function or attentional function tasks, were found between the mTBI group and controls. A highly significant protective association between memory performance and SNCA promoter SNP rs1372525 was observed in the mTBI patients (p = 0.006 and 0.029 for the long and short delay conditions of the California Verbal Learning Tests, respectively), where the presence of at least one copy of the A (minor) allele was protective after mTBI. These results may help elucidate the pathophysiology of cognitive alterations after mTBI, and thus warrant further investigation

    Scaling of thermal conductivity of helium confined in pores

    Full text link
    We have studied the thermal conductivity of confined superfluids on a bar-like geometry. We use the planar magnet lattice model on a lattice H×H×LH\times H\times L with L≫HL \gg H. We have applied open boundary conditions on the bar sides (the confined directions of length HH) and periodic along the long direction. We have adopted a hybrid Monte Carlo algorithm to efficiently deal with the critical slowing down and in order to solve the dynamical equations of motion we use a discretization technique which introduces errors only O((δt)6)O((\delta t)^6) in the time step δt\delta t. Our results demonstrate the validity of scaling using known values of the critical exponents and we obtained the scaling function of the thermal resistivity. We find that our results for the thermal resistivity scaling function are in very good agreement with the available experimental results for pores using the tempComment: 5 two-column pages, 3 figures, Revtex

    Genomics and CSF Analyses Implicate Thyroid Hormone in Hippocampal Sclerosis of Aging

    Get PDF
    We report evidence of a novel pathogenetic mechanism in which thyroid hormone dysregulation contributes to dementia in elderly persons. Two single nucleotide polymorphisms (SNPs) on chromosome 12p12 were the initial foci of our study: rs704180 and rs73069071. These SNPs were identified by separate research groups as risk alleles for non-Alzheimer’s neurodegeneration. We found that the rs73069071 risk genotype was associated with hippocampal sclerosis (HS) pathology among people with the rs704180 risk genotype (National Alzheimer’s Coordinating Center/Alzheimer’s Disease Genetic Consortium data; n = 2113, including 241 autopsy-confirmed HS cases). Furthermore, both rs704180 and rs73069071 risk genotypes were associated with widespread brain atrophy visualized by MRI (Alzheimer’s Disease Neuroimaging Initiative data; n = 1239). In human brain samples from the Braineac database, both rs704180 and rs73069071 risk genotypes were associated with variation in expression of ABCC9, a gene which encodes a metabolic sensor protein in astrocytes. The rs73069071 risk genotype was also associated with altered expression of a nearby astrocyte-expressed gene, SLCO1C1. Analyses of human brain gene expression databases indicated that the chromosome 12p12 locus may regulate particular astrocyte-expressed genes induced by the active form of thyroid hormone, triiodothyronine (T3). This is informative biologically, because the SLCO1C1 protein transports thyroid hormone into astrocytes from blood. Guided by the genomic data, we tested the hypothesis that altered thyroid hormone levels could be detected in cerebrospinal fluid (CSF) obtained from persons with HS pathology. Total T3 levels in CSF were elevated in HS cases (p \u3c 0.04 in two separately analyzed groups), but not in Alzheimer’s disease cases, relative to controls. No change was detected in the serum levels of thyroid hormone (T3 or T4) in a subsample of HS cases prior to death. We conclude that brain thyroid hormone perturbation is a potential pathogenetic factor in HS that may also provide the basis for a novel CSF-based clinical biomarker

    Critical dynamics in thin films

    Full text link
    Critical dynamics in film geometry is analyzed within the field-theoretical approach. In particular we consider the case of purely relaxational dynamics (Model A) and Dirichlet boundary conditions, corresponding to the so-called ordinary surface universality class on both confining boundaries. The general scaling properties for the linear response and correlation functions and for dynamic Casimir forces are discussed. Within the Gaussian approximation we determine the analytic expressions for the associated universal scaling functions and study quantitatively in detail their qualitative features as well as their various limiting behaviors close to the bulk critical point. In addition we consider the effects of time-dependent fields on the fluctuation-induced dynamic Casimir force and determine analytically the corresponding universal scaling functions and their asymptotic behaviors for two specific instances of instantaneous perturbations. The universal aspects of nonlinear relaxation from an initially ordered state are also discussed emphasizing the different crossovers that occur during this evolution. The model considered is relevant to the critical dynamics of actual uniaxial ferromagnetic films with symmetry-preserving conditions at the confining surfaces and for Monte Carlo simulations of spin system with Glauber dynamics and free boundary conditions.Comment: 64 pages, 21 figure

    Genetic Influences on Plasma Homocysteine Levels in African Americans and Yoruba Nigerians.

    Get PDF
    Plasma homocysteine, a metabolite involved in key cellular methylation processes seems to be implicated in cognitive functions and cardiovascular health with its high levels representing a potential modifiable risk factor for Alzheimer’s disease (AD) and other dementias. A better understanding of the genetic factors regulating homocysteine levels, particularly in non-white populations, may help in risk stratification analyses of existing clinical trials and may point to novel targets for homocysteine-lowering therapy. To identify genetic influences on plasma homocysteine levels in individuals with African ancestry, we performed a targeted gene and pathway-based analysis using a priori biological information and then to identify new association performed a genome-wide association study. All analyses used combined data from the African American and Yoruba cohorts from the Indianapolis-Ibadan Dementia Project. Targeted analyses demonstrated significant associations of homocysteine and variants within the CBS (Cystathionine beta-Synthase) gene. We identified a novel genome-wide significant association of the AD risk gene CD2AP (CD2-associated protein) with plasma homocysteine levels in both cohorts. Minor allele (T) carriers of identified CD2AP variant (rs6940729) exhibited decreased homocysteine level. Pathway enrichment analysis identified several interesting pathways including the GABA receptor activation pathway. This is noteworthy given the known antagonistic effect of homocysteine on GABA receptors. These findings identify several new targets warranting further investigation in relation to the role of homocysteine in neurodegeneration

    Genetic studies of quantitative MCI and AD phenotypes in ADNI: Progress, opportunities, and plans

    Get PDF
    INTRODUCTION: Genetic data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) have been crucial in advancing the understanding of Alzheimer's disease (AD) pathophysiology. Here, we provide an update on sample collection, scientific progress and opportunities, conceptual issues, and future plans. METHODS: Lymphoblastoid cell lines and DNA and RNA samples from blood have been collected and banked, and data and biosamples have been widely disseminated. To date, APOE genotyping, genome-wide association study (GWAS), and whole exome and whole genome sequencing data have been obtained and disseminated. RESULTS: ADNI genetic data have been downloaded thousands of times, and >300 publications have resulted, including reports of large-scale GWAS by consortia to which ADNI contributed. Many of the first applications of quantitative endophenotype association studies used ADNI data, including some of the earliest GWAS and pathway-based studies of biospecimen and imaging biomarkers, as well as memory and other clinical/cognitive variables. Other contributions include some of the first whole exome and whole genome sequencing data sets and reports in healthy controls, mild cognitive impairment, and AD. DISCUSSION: Numerous genetic susceptibility and protective markers for AD and disease biomarkers have been identified and replicated using ADNI data and have heavily implicated immune, mitochondrial, cell cycle/fate, and other biological processes. Early sequencing studies suggest that rare and structural variants are likely to account for significant additional phenotypic variation. Longitudinal analyses of transcriptomic, proteomic, metabolomic, and epigenomic changes will also further elucidate dynamic processes underlying preclinical and prodromal stages of disease. Integration of this unique collection of multiomics data within a systems biology framework will help to separate truly informative markers of early disease mechanisms and potential novel therapeutic targets from the vast background of less relevant biological processes. Fortunately, a broad swath of the scientific community has accepted this grand challenge

    Genetic analysis of quantitative phenotypes in AD and MCI: imaging, cognition and biomarkers

    Get PDF
    The Genetics Core of the Alzheimer’s Disease Neuroimaging Initiative (ADNI), formally established in 2009, aims to provide resources and facilitate research related to genetic predictors of multidimensional Alzheimer’s disease (AD)-related phenotypes. Here, we provide a systematic review of genetic studies published between 2009 and 2012 where either ADNI APOE genotype or genome-wide association study (GWAS) data were used. We review and synthesize ADNI genetic associations with disease status or quantitative disease endophenotypes including structural and functional neuroimaging, fluid biomarker assays, and cognitive performance. We also discuss the diverse analytical strategies used in these studies, including univariate and multivariate analysis, meta-analysis, pathway analysis, and interaction and network analysis. Finally, we perform pathway and network enrichment analyses of these ADNI genetic associations to highlight key mechanisms that may drive disease onset and trajectory. Major ADNI findings included all the top 10 AD genes and several of these (e.g., APOE, BIN1, CLU, CR1, and PICALM) were corroborated by ADNI imaging, fluid and cognitive phenotypes. ADNI imaging genetics studies discovered novel findings (e.g., FRMD6) that were later replicated on different data sets. Several other genes (e.g., APOC1, FTO, GRIN2B, MAGI2, and TOMM40) were associated with multiple ADNI phenotypes, warranting further investigation on other data sets. The broad availability and wide scope of ADNI genetic and phenotypic data has advanced our understanding of the genetic basis of AD and has nominated novel targets for future studies employing next-generation sequencing and convergent multi-omics approaches, and for clinical drug and biomarker development. Electronic supplementary material The online version of this article (doi:10.1007/s11682-013-9262-z) contains supplementary material, which is available to authorized users

    The association between retraction of the torn rotator cuff and increasing expression of hypoxia inducible factor 1α and vascular endothelial growth factor expression: an immunohistological study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Differing levels of tendon retraction are found in full-thickness rotator cuff tears. The pathophysiology of tendon degeneration and retraction is unclear. Neoangiogenesis in tendon parenchyma indicates degeneration. Hypoxia inducible factor 1α (HIF) and vascular endothelial growth factor (VEGF) are important inducers of neoangiogenesis. Rotator cuff tendons rupture leads to fatty muscle infiltration (FI) and muscle atrophy (MA). The aim of this study is to clarify the relationship between HIF and VEGF expression, neoangiogenesis, FI, and MA in tendon retraction found in full-thickness rotator cuff tears.</p> <p>Methods</p> <p>Rotator cuff tendon samples of 33 patients with full-thickness medium-sized rotator cuff tears were harvested during reconstructive surgery. The samples were dehydrated and paraffin embedded. For immunohistological determination of VEGF and HIF expression, sample slices were strained with VEGF and HIF antibody dilution. Vessel density and vessel size were determined after Masson-Goldner staining of sample slices. The extent of tendon retraction was determined intraoperatively according to Patte's classification. Patients were assigned to 4 categories based upon Patte tendon retraction grade, including one control group. FI and MA were measured on standardized preoperative shoulder MRI.</p> <p>Results</p> <p>HIF and VEGF expression, FI, and MA were significantly higher in torn cuff samples compared with healthy tissue (p < 0.05). HIF and VEGF expression, and vessel density significantly increased with extent of tendon retraction (p < 0.05). A correlation between HIF/VEGF expression and FI and MA could be found (p < 0.05). There was no significant correlation between HIF/VEGF expression and neovascularity (p > 0.05)</p> <p>Conclusion</p> <p>Tendon retraction in full-thickness medium-sized rotator cuff tears is characterized by neovascularity, increased VEGF/HIF expression, FI, and MA. VEGF expression and neovascularity may be effective monitoring tools to assess tendon degeneration.</p

    Integration of bioinformatics and imaging informatics for identifying rare PSEN1 variants in Alzheimer’s disease

    Get PDF
    Background: Pathogenic mutations in PSEN1 are known to cause familial early-onset Alzheimer’s disease (EOAD) but common variants in PSEN1 have not been found to strongly influence late-onset AD (LOAD). The association of rare variants in PSEN1 with LOAD-related endophenotypes has received little attention. In this study, we performed a rare variant association analysis of PSEN1 with quantitative biomarkers of LOAD using whole genome sequencing (WGS) by integrating bioinformatics and imaging informatics. Methods: A WGS data set (N = 815) from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort was used in this analysis. 757 non-Hispanic Caucasian participants underwent WGS from a blood sample and high resolution T1-weighted structural MRI at baseline. An automated MRI analysis technique (FreeSurfer) was used to measure cortical thickness and volume of neuroanatomical structures. We assessed imaging and cerebrospinal fluid (CSF) biomarkers as LOAD-related quantitative endophenotypes. Single variant analyses were performed using PLINK and gene-based analyses of rare variants were performed using the optimal Sequence Kernel Association Test (SKAT-O). Results: A total of 839 rare variants (MAF < 1/√(2 N) = 0.0257) were found within a region of ±10 kb from PSEN1. Among them, six exonic (three non-synonymous) variants were observed. A single variant association analysis showed that the PSEN1 p. E318G variant increases the risk of LOAD only in participants carrying APOE ε4 allele where individuals carrying the minor allele of this PSEN1 risk variant have lower CSF Aβ1–42 and higher CSF tau. A gene-based analysis resulted in a significant association of rare but not common (MAF ≥ 0.0257) PSEN1 variants with bilateral entorhinal cortical thickness. Conclusions: This is the first study to show that PSEN1 rare variants collectively show a significant association with the brain atrophy in regions preferentially affected by LOAD, providing further support for a role of PSEN1 in LOAD. The PSEN1 p. E318G variant increases the risk of LOAD only in APOE ε4 carriers. Integrating bioinformatics with imaging informatics for identification of rare variants could help explain the missing heritability in LOAD
    • …
    corecore