Adsorption of para-Hydrogen on the surface of graphite pre-plated with a
single layer of atomic krypton is studied thoretically by means of Path
Integral Ground State Monte Carlo simulations. We compute energetics and
density profiles of para-hydrogen, and determine the structure of the adsorbed
film for various coverages. Results show that there are two thermodynamically
stable monolayer phases of para-hydrogen, both solid. One is commensurate with
the krypton layer, the other is incommensurate. No evidence is seen of a
thermodynamically stable liquid phase, at zero temperature. These results are
qualitatively similar to what is seen for for para-hydrogen on bare graphite.
Quantum exchanges of hydrogen molecules are suppressed in this system.Comment: 12 pages, 6 figures, to appear in the proceedings of "Advances in
Computational Many-Body Physics", Banff, Alberta (Canada), January 13-16 200