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Abstract

Background: Pathogenic mutations in PSEN1 are known to cause familial early-onset Alzheimer’s disease (EOAD)
but common variants in PSEN1 have not been found to strongly influence late-onset AD (LOAD). The association of
rare variants in PSEN1 with LOAD-related endophenotypes has received little attention. In this study, we performed
a rare variant association analysis of PSEN1 with quantitative biomarkers of LOAD using whole genome sequencing
(WGS) by integrating bioinformatics and imaging informatics.

Methods: A WGS data set (N = 815) from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort was used
in this analysis. 757 non-Hispanic Caucasian participants underwent WGS from a blood sample and high resolution
T1-weighted structural MRI at baseline. An automated MRI analysis technique (FreeSurfer) was used to measure
cortical thickness and volume of neuroanatomical structures. We assessed imaging and cerebrospinal fluid (CSF)
biomarkers as LOAD-related quantitative endophenotypes. Single variant analyses were performed using PLINK and
gene-based analyses of rare variants were performed using the optimal Sequence Kernel Association Test (SKAT-O).

Results: A total of 839 rare variants (MAF < 1/√(2 N) = 0.0257) were found within a region of ±10 kb from PSEN1.
Among them, six exonic (three non-synonymous) variants were observed. A single variant association analysis
showed that the PSEN1 p. E318G variant increases the risk of LOAD only in participants carrying APOE ε4 allele
where individuals carrying the minor allele of this PSEN1 risk variant have lower CSF Aβ1–42 and higher CSF tau.
A gene-based analysis resulted in a significant association of rare but not common (MAF ≥ 0.0257) PSEN1 variants
with bilateral entorhinal cortical thickness.

Conclusions: This is the first study to show that PSEN1 rare variants collectively show a significant association with
the brain atrophy in regions preferentially affected by LOAD, providing further support for a role of PSEN1 in LOAD.
The PSEN1 p. E318G variant increases the risk of LOAD only in APOE ε4 carriers. Integrating bioinformatics with
imaging informatics for identification of rare variants could help explain the missing heritability in LOAD.
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Background
Late-onset Alzheimer’s disease (LOAD) is a progressive
neurodegenerative condition with no validated disease
modifying treatment. With the heritability of LOAD
estimated to be as high as 80 %, a better understanding
of the genetic susceptibility factors of LOAD would ad-
vance strategies for early detection and treatment [1, 2].
Recent large-scale genome-wide association studies
(GWAS) have identified and confirmed approximately
twenty-one LOAD-associated genes in addition to
APOE, whose ε4 allele is the best established and the
most significant genetic risk factor [3]. While about
50 % of LOAD heritability is accounted for by all of the
known LOAD susceptibility genes including APOE, a
substantial proportion of the heritability for LOAD re-
mains to be identified [1]. A growing body of evidence
highlighting the role of rare variants has opened excit-
ing avenues for discovering novel genetic factors to ex-
plain some of the missing heritability and facilitate a
comprehensive understanding of LOAD.
Rapid advancement of next generation sequencing

technologies has facilitated the search for genetic sus-
ceptibility factors that influence disease risk and become
a key technique for detecting pathogenic variants in hu-
man diseases [4]. Our understanding of the impact of
the genetic variation on human diseases has been greatly
advanced using high-throughput sequencing [5]. Whole
genome sequencing (WGS) has been used to obtain the
most comprehensive genetic variation of an individual
and perform detailed evaluation of all genetic variation
[6]. Several sequencing-based association studies could
identify functional risk variants with large effects on
LOAD pathogenesis within TREM2, ABCA7, and PLD3
genes [7–11].
Pathogenic mutations in PSEN1 are known to cause

familial early-onset Alzheimer’s disease (EOAD) but com-
mon variants in PSEN1 have not been found to strongly
influence LOAD [12]. Thus, the association of rare vari-
ants in PSEN1 with LOAD-related endophenotypes has
received little attention.
Accumulating evidence shows that common and rare

risk variants are likely to co-exist at the same locus (known
as pleomorphic risk loci) [13]. Deep re-sequencing-based
association studies could identify functional risk variants
within known susceptibility genes such as ABCA7 [10]. In
this study, we performed a rare variant association analysis
of PSEN1 with quantitative biomarkers of LOAD using
WGS. Integration of bioinformatics and imaging informat-
ics will provide a comprehensive and integrative approach
to identifying a LOAD-specific genetic variation. In par-
ticular, imaging genetics combines neuroimaging such as
MRI and PET with genetics for studying the influence of
genetic variation on brain structure and function [14].
Quantitative endophenotypes increase detection power for

rare variant association analysis and give additional in-
formation to interpret the association of variants by
suggesting potential biological mechanisms by which
the identified variants could lead to disease [14].

Methods
Subjects
All individuals included in these analyses were partici-
pants in the Alzheimer’s Disease Neuroimaging Initia-
tive Phase 1 (ADNI-1) and its subsequent extensions
(ADNI-GO/2). The initial phase (ADNI-1) was launched
in 2003 to test whether serial magnetic resonance imaging
(MRI), position emission tomography (PET), other bio-
logical markers, and clinical and neuropsychological as-
sessment could be combined to measure the progression
of MCI and early AD. The ADNI-1 participants were
recruited from 59 sites across the U.S. and Canada and in-
clude approximately 200 cognitively normal older individ-
uals (healthy controls (HC)), 400 patients diagnosed with
MCI, and 200 patients diagnosed with early probable AD
aged 55–90 years. ADNI-1 has been extended to its
subsequent phases (ADNI-GO and ADNI-2) for follow-
up for existing participants and additional new enroll-
ments. Inclusion and exclusion criteria, clinical and
neuroimaging protocols, and other information about
ADNI have been published previously [15] and can be
found at www.adni-info.org. Demographic information,
raw scan data, APOE and whole genome sequencing
data, neuropsychological test scores, and diagnostic in-
formation are available from the ADNI data repository
(http://www.loni.usc.edu/ADNI/). Written informed con-
sent was obtained at the time of enrollment for imaging
and genetic sample collection and protocols of con-
sent forms were approved by each participating sites’
Institutional Review Board (IRB).

Whole genome sequencing (WGS) analysis
WGS was performed on blood-derived genomic DNA
samples obtained from 817 ADNI participants. Samples
were sequenced on the Illumina HiSeq2000 using
paired-end read chemistry and read lengths of 100 bp
(www.illumina.com). The resulting Illumina qseq files
were converted into fastq files, a text-based format for
storing both sequence reads and their corresponding
quality information in Phred format. Quality checks
and read statistics are performed on raw sequence data
in FASTQ format using FastQC. Short-read sequences
are mapped to the NCBI reference human genome
(build 37.72) using BWA, allowing for up to two mis-
matches in each read [16]. During the alignment, we
use only bases with Phred Quality > 15 in each read to
include soft clipping of low-quality bases, retain only
uniquely mapped pair-end reads, and remove potential
PCR duplicates. After completing initial alignment, the
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alignment is further refined by locally realigning any
suspicious reads. The reported base calling quality
scores obtained from the sequencer are re-calibrated
to account for covariates of base errors such as se-
quencing technology and machine cycle [17]. Finally,
the realigned reads are written to a BAM file for fur-
ther analysis. The analysis-ready BAM files are ana-
lyzed to identify all variants with statistical evidence
for an alternate allele present among samples using
GATK HaplotypeCaller for multi-sample variant call-
ings [17]. For variants which pass recommended vari-
ation quality criteria, ANNOVAR is used to annotate
all variants (SNPs (single nucleotide polymorphism)
and short insertion/deletions (indels)) [18]. We per-
formed standard quality control procedures in WGS to
assess the quality of WGS and to remove individuals
and genetic variants with poor quality. We excluded
variants that did not pass the variant quality score re-
calibration step using GATK in the WGS analysis pipe-
line and we removed variants whose genotype quality
(GQ) scores < 20. The quality of the variant calls was
assessed by comparing sequencing-derived SNPs with
those obtained from the Illumina Omni 2.5 M geno-
typing array in order to estimate the concordance rate
for each individual. Among 817 subjects, two subjects
had concordance rates less than 99 % and had been re-
moved from our analysis. The remaining subjects had
a mean concordance rate of 99.9 % (Fig. 1).

Subject selection
Since population stratification is known to cause spurious
association in disease studies, we restricted our analyses to
only subjects that clustered with CEU (Utah residents with
Northern and Western European ancestry from the CEPH
collection) + TSI (Toscani in Italia) populations using
HapMap 3 genotype data and the multidimensional scal-
ing (MDS) analysis (www.hapmap.org) [19].

CSF measurements
Baseline CSF samples were obtained using previously re-
ported methods for 3 CSF measurements (Amyloid-β 1–
42 peptide (Aβ1–41), total tau (t-tau), and tau phosphory-
lated at the threonine 181 (p-tau181p)) as described [20].
Subjects who had at least one value greater or smaller
than 4 SD (standard deviation) from the mean value of
each of 3 CSF variables were removed from the analysis
as extreme outliers [20].

Imaging processing
T1-weighted brain MRI scans at baseline were acquired
using a sagittal 3D MP-RAGE sequence following the
ADNI MRI protocol [21]. As detailed in previous studies
[22], a widely employed automated MRI analysis tech-
nique was used to process MRI scans: FreeSurfer V5.1
software (http://surfer.nmr.mgh.harvard.edu/). FreeSurfer
was used to process and extract brain-wide target MRI im-
aging phenotypes (region volume and cortical thickness)

Fig. 1 Pipeline for whole genome sequencing data analysis
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by automated segmentation and parcellation. The cortical
surface was reconstructed to measure thickness at each
vertex on surface. The cortical thickness was calculated by
taking the Euclidean distance between the grey/white
boundary and the grey/cerebrospinal fluid (CSF) boundary
at each vertex on surface. For surface-based comparison
of the cortical thickness, all individual cortical surfaces
were registered to a common surface template, which was
an average created from all cognitively normal control
subjects. The cortical thickness was smoothed with
10 mm FWHM Gaussian kernel to improve the signal-to-
noise ratio and statistical power.

Statistical analysis
Using all WGS-identified SNPs in the PSEN1 gene region,
we performed a gene-based analysis of rare variants with
the optimal Sequence Kernel Association Test (SKAT-O)
[23]. Rare variants were defined as variants with less than
1/√(2 N) = 0.0257 minor allele frequency (MAF) in our
WGS sample. SKAT-O, which is an optimal unified ap-
proach for testing the association between rare variants
and phenotypes in sequencing association studies and al-
lows for heterogeneous effect of all variants within each
gene, performed a score test for the model that includes
the variants within each gene. Burden tests collapse infor-
mation for multiple rare variants into a single genetic
score and test for association of the score with a trait of
interest [24]. In this study, we used the Morris and Zeggini
(MZ) test as a burden test [25]. The MZ test uses a dom-
inant genetic model to compute genetic scores as the
number of rare variants for which an individual carries at
least one copy of the minor allele [24]. The burden tests
are powerful when a large proportion of variants are
causal and effects are in the same direction. We per-
formed association analysis using all SNPs. A single rare
variant association analysis was tested using linear regres-
sion under a dominant genetic model in PLINK. Potential
confounding factors (age, gender, years of education, intra-
cranial volume (ICV), and MRI field strength) were used
as covariates.

Results
A total of 757 participants met criteria (quality controls
and population stratification) for inclusion in analysis.
There were 47 patients with Alzheimer’s disease (AD),
219 patients with early mild cognitive impairment
(MCI), 232 patients with late MCI, and 259 cognitively
normal older adults (HC) (Table 1). As expected, AD
patients were found to have significantly lower Mini-
Mental State Examination (MMSE) scores. Furthermore,
the APOE ε4 allele frequency was significantly higher in
patients with AD.

Sequencing of the PSEN1 gene region
From an established WGS analysis pipeline, we found a
total of 1,025 SNPs within a region of ±10 kb from
PSEN1. Among 1,025 variants, there are 186 common
(minor allele frequency (MAF) ≥ 0.0257) and 839 rare
SNPs (MAF < 0.0257). Of 6 exonic rare variants, we
found 3 nonsynonymous SNPs (Table 2).

Association of a PSEN1 rare variant p. E318G with CSF
Biomarkers
To replicate the previous finding the risk variant (p. E318G)
in PSEN1 is significantly associated with LOAD-specific
biomarkers, we performed an association using CSF
biomarkers Aβ1–42 and t-tau, biomarkers of LOAD-
associated pathologic changes in the brain. 583 partici-
pants with WGS data also had CSF biomarkers. A
single variant association analysis showed that the PSEN1
p. E318G variant was significantly associated with CSF
biomarkers and increased the risk of LOAD in partici-
pants with APOE ε4 allele (p < 0.05; Table 3). Individuals
carrying the minor allele of the PSEN1 risk variant have
lower CSF Aβ1–42 and higher CSF t-tau. However, the
PSEN1 p. E318G variant was not significantly associated
with CSF biomarkers in participant group not carrying
APOE ε4 allele. The percentage of participants without

Table 1 Demographic characteristics of study participants

HC EMCI LMCI AD

N 259 219 232 47

Gender (M/F) 132/127 121/98 148/84 30/17

Age 74.3 (5.5) 71.1 (7.4) 73.2 (7.3) 75.2 (9.3)

Education 16.5 (2.7) 16.0 (2.7) 16.1 (3.0) 15.7 (2.7)

MMSE 29.1 (1.2) 28.4 (1.5) 27.5 (1.7) 22.9 (2.0)

APOE (ε4−/ε4+) 189/70 132/87 113/119 14/33

Values given are means (standard deviation), MMSE mini-mental state examination,
HC cognitive normal older adult, EMCI early mild cognitive impairment (MCI), LMCI
late MCI, AD Alzheimer’s disease

Table 2 Single nucleotide polymorphisms (SNP) within PSEN1 ± 10
kilobase (kb)

Common SNP
(MAF≥ 0.0257)

Novel 5 intronic: 4; downstream: 1

Known 181 intergenic: 35; intronic: 141; 3′ UTR: 7;
up (down) stream: 3

Rare SNP
(MAF < 0.0257)

Novel 498 intergenic: 99; intronic: 372; exonic: 2; 3′
UTR: 15; 5′ UTR: 1; up (down) stream: 9

Known 341 intergenic: 57; intronic: 257; exonic: 4; 3′
UTR: 19; 5′UTR: 5; up (down) stream: 3

Table 3 Association results (p-values) of PSEN1 p. E318G variant
for quantitative trait analysis using a dominant model

All participants
(N = 583)

Participants with
APOE ε4 (N = 234)

Participants without
APOE ε4 (N = 349)

Aβ1–42 0.6199 0.0254 0.2733

t-tau 0.3795 0.0125 0.8673
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APOE ε4 allele having the minor allele (G) of PSEN1
p. E318G is 6 % (21 participants), which is two times
higher than that of participants with APOE ε4 allele
(3 %; 7 participants) having the minor allele of PSEN1
p. E318G. Furthermore, the PSEN1 p. E318G variant
was not significantly associated with CSF biomarkers
in all participants regardless of the APOE ε4 status.

Gene-based association of PSEN1 rare variants with
LOAD-specific imaging biomarkers
To test the hypothesis that PSEN1 rare variants would
be associated with structural changes in LOAD-related
brain regions, we assessed entorhinal cortical thickness
(EntCtx) as LOAD-related quantitative endophenotypes
based on prior studies indicating that regional structural
brain change in LOAD occurs initially and most severely
in the entorhinal cortex and hippocampus before spread-
ing throughout the entire brain [26]. Of the 755 of the 757
participants with WGS data, had usable high resolution
T1-weighted structural MRI at baseline.
Gene-based association analysis of rare SNPs in the

PSEN1 gene with both SKAT-O and a burden test resulted
that PSEN1 rare variants were significantly associated with
entorhinal cortical thickness after correction for multiple
comparisons. The significant association was increased
after adjustment for the APOE ε4 status (p < 0.05; Table 4).

To examine the cortical topography of all rare vari-
ants in PSEN1, an unbiased whole-brain multivariate
analysis of cortical thickness was performed on a
vertex-by-vertex basis to detect additional regions of
association. We collapsed all rare variants into single
risk score by combining minor allele counts into a sin-
gle risk score with a dominant genetic model. A general
linear model was constructed using age, gender, year of
education, MRI field strength, and ICV as covariates. A
random field theory based adjustment was used to cor-
rect for multiple comparisons to retain a 0.05 level of
significance. Figure 2 displays the results of the main
effect of all rare variants after adjusting for APOE ε4
status. Highly significant clusters associated with the
risk score were found in bilateral temporal, bilateral
parietal, and right frontal lobes regions (Table 5), where
subjects having high risk scores showed thinner mean

Table 4 Gene-based association results (p-values) for imaging
biomarkers (entorhinal cortical thickness (EntCtx)) using rare
variants (MAF < 0.0257)

Burden SKAT-O SKAT-O after adjusting for APOE ε4
status

Left EntCtx 0.009 0.015 0.010

Right EntCtx 0.027 0.046 0.032

Fig. 2 Surface-based whole-brain analysis results. A whole-brain multivariate analysis of cortical thickness was performed on a vertex-by-vertex
basis to visualize the topography of genetic association in an unbiased manner. Statistical maps were thresholded using a random field theory
adjustment to a corrected significance level of p = 0.05
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cortical thickness compared with the participants having
lower risk scores (Fig. 2).

Association of common SNPs in the PSEN1 gene with
LOAD-specific imaging biomarkers
A single variant and a gene-based association analyses of
common SNPs in the PSEN1 gene identified no significant
association with entorhinal cortical thickness passed a
multiple comparison correction (data not shown).

Discussion and Conclusions
An association analysis of rare variants was performed
on 757 ADNI WGS samples to investigate the influence
of genetic variation in the PSEN1 gene on LOAD-related
imaging biomarkers. To our knowledge, this is the first
study to show that PSEN1 rare variants collectively show
a significant association with the brain atrophy in re-
gions preferentially affected by LOAD using integrated
informatics methodologies. Our results indicated that
rare variants in PSEN1 were significantly associated with
cortical thickness after correction for multiple compari-
sons and the significant association was increased after
adjustment for the APOE ε4 status.
PSEN1 regulates APP processing by affecting on

gamma secretase enzyme which cleaves amyloid pre-
cursor protein (APP) and regulates amyloid-β accumu-
lation which is a pathological hallmark of AD [27]. In
addition, PSEN1 plays an important role in Notch
signaling pathway through the cleavage of the Notch
receptor and Wnt signaling pathway [28, 29]. PSEN1
locates on chromosome 14 and mutations in this gene
are autosomal dominant and cause the early-onset AD
[30]. Large-scale genome-wide association study (GWAS)
showed that none of SNPs at the PSEN1 locus reached to
genome-wide significance [31]. Association studies inves-
tigating rare coding variants on the gene showed that
rare variants in PSEN1 were associated with sporadic
LOAD [32, 33] and PSEN1 p. E318G variant increased the
risk of LOAD only in participants carrying APOE ε4
allele [12].

Performing advanced sequencing data analysis (bio-
informatics) and human brain imaging analysis (imaging
informatics) in an integrated approach enables us to iden-
tify blood-based biomarkers for risk or protection of
LOAD, leading to an improved early diagnosis and progno-
sis, using LOAD-specific endophenotypes. Furthermore,
use of quantitative endophenotypes substantially increase
detection power for rare variant association analysis and
holds great promise for discovery of variation mechanically
related to AD pathophysiology. Confirmation of our results
in independent and larger cohorts will be warranted.
In conclusion, we used whole genome sequencing to

perform an association analysis of rare variants in PSEN1
with LOAD-related imaging biomarkers. Our results illus-
trate the potential of integration of informatics method-
ologies to identify novel diagnostic/therapeutic targets for
LOAD and understand the genetics and pathobiology of
LOAD.
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