368 research outputs found

    Free vibration analysis of laminated composite plates based on FSDT using one-dimensional IRBFN method

    Get PDF
    This paper presents a new effective radial basis function (RBF) collocation technique for the free vibration analysis of laminated composite plates using the first order shear deformation theory (FSDT). The plates, which can be rectangular or non-rectangular, are simply discretised by means of Cartesian grids. Instead of using conventional differentiated RBF networks, one-dimensional integrated RBF networks (1D-IRBFN) are employed on grid lines to approximate the field variables. A number of examples concerning various thickness-to-span ratios, material properties and boundary conditions are considered. Results obtained are compared with the exact solutions and numerical results by other techniques in the literature to investigate the performance of the proposed method

    Optical Hall response of bilayer graphene: the manifestation of chiral hybridised states in broken mirror symmetry lattices

    Full text link
    Understanding the mechanisms governing the optical activity of layered-stacked materials is crucial to the design of devices aimed at manipulating light at the nanoscale. Here, we show that both twisted and slid bilayer graphene are chiral systems that can deflect the polarization of linear polarized light. However, only twisted bilayer graphene supports circular dichroism. Our calculation scheme, which is based on the time-dependent Schr\"odinger equation, is particularly efficient for calculating the optical-conductivity tensor. Specifically, it allows us to show the chirality of hybridized states as the handedness-dependent bending of the trajectory of kicked Gaussian wave packets in bilayer lattices. We show that nonzero Hall conductivity is the result of the noncanceling manifestation of hybridized states in chiral lattices. We also demonstrate the continuous dependence of the conductivity tensor on the twist angle and the sliding vector.Comment: 24 pages, 6 figure

    Retrieval of material properties of monolayer transition-metal dichalcogenides from magnetoexciton energy spectra

    Full text link
    Reduced exciton mass, polarizability, and dielectric constant of the surrounding medium are essential properties for semiconduction materials, and they can be extracted recently from the magnetoexciton energies. However, the acceptable accuracy of the previously suggested method requires very high magnetic intensity. Therefore, in the present paper, we propose an alternative method of extracting these material properties from recently available experimental magnetoexciton s-state energies in monolayer transition-metal dichalcogenides (TMDCs). The method is based on the high sensitivity of exciton energies to the material parameters in the Rytova-Keldysh model. It allows us to vary the considered material parameters to get the best fit of the theoretical calculation to the experimental exciton energies for the 1s1s, 2s2s, and 3s3s states. This procedure gives values of the exciton reduced mass and 2D polarizability. Then, the experimental magnetoexciton spectra compared to the theoretical calculation gives also the average dielectric constant. Concrete applications are presented only for monolayers WSe2_2 and WS2_2 from the recently available experimental data. However, the presented approach is universal and can be applied to other monolayer TMDCs. The mentioned fitting procedure requires a fast and effective method of solving the Schr\"{o}dinger of an exciton in monolayer TMDCs with a magnetic field. Therefore, we also develop such a method in this study for highly accurate magnetoexciton energies.Comment: 8 pages, 4 figures, 4 table

    Miniaturized multisensor system with a thermal gradient: Performance beyond the calibration range

    Get PDF
    Two microchips, each with four identical microstructured sensors using SnO2 nanowires as sensing material (one chip decorated with Ag nanoparticles, the other with Pt nanoparticles), were used as a nano-electronic nose to distinguish five different gases and estimate their concentrations. This innovative approach uses identical sensors working at different operating temperatures thanks to the thermal gradient created by an integrated microheater. A system with in-house developed hardware and software was used to collect signals from the eight sensors and combine them into eight-dimensional data vectors. These vectors were processed with a support vector machine allowing for qualitative and quantitative discrimination of all gases after calibration. The system worked perfectly within the calibrated range (100% correct classification, 6.9% average error on concentration value). This work focuses on minimizing the number of points needed for calibration while maintaining good sensor performance, both for classification and error in estimating concentration. Therefore, the calibration range (in terms of gas concentration) was gradually reduced and further tests were performed with concentrations outside these new reduced limits. Although with only a few training points, down to just two per gas, the system performed well with 96% correct classifications and 31.7% average error for the gases at concentrations up to 25 times higher than its calibration range. At very low concentrations, down to 20 times lower than the calibration range, the system worked less well, with 93% correct classifications and 38.6% average error, probably due to proximity to the limit of detection of the sensors
    • ā€¦
    corecore