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Abstract

This paper presents a new effective radial basis function (RBF) collocation
technique for the free vibration analysis of laminated composite plates using
the first order shear deformation theory (FSDT). The plates, which can be
rectangular or non-rectangular, are simply discretised by means of Carte-
sian grids. Instead of using conventional differentiated RBF networks, one-
dimensional integrated RBF networks (1D-IRBFN) are employed on grid
lines to approximate the field variables. A number of examples concerning
various thickness-to-span ratios, material properties and boundary conditions
are considered. Results obtained are compared with the exact solutions and
numerical results by other techniques in the literature to investigate the per-
formance of the proposed method.

Keywords: laminated composite plates; free vibration; rectangular and
non-rectangular domains; integrated radial basis functions; Cartesian grids.

1. Introduction

Free vibration analysis of laminated composite plates has been an impor-
tant problem in the design of mechanical, civil and aerospace applications.
Vibration can waste energy and create unwanted noise in the motions of
engines, motors, or any mechanical devices in operation. When a system op-
erates at the system natural frequency, resonance can happen causing large
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deformations and even catastrophic failure in improperly constructed struc-
tures. Careful designs can minimize those unwanted vibrations.

The lamination scheme and material properties of individual lamina pro-
vide an added flexibility to designers to tailor the stiffness and strength of
composite laminates to match the structural requirements. The significant
difference between the classical plate theory (CLPT) and the first order shear
deformation theory (FSDT) is the effect of including transverse shear defor-
mation on the predicted deflections and frequencies. The CLPT underpre-
dicts deflections and overpredicts frequencies for plates with thickness-to-
length ratios larger than 0.05 [1] while the FSDT has been the most com-
monly used in the vibration analysis of moderately thick composite plates
with thickness-to-length ratio less than 0.2 [2]. The FSDT is an approximate
theory with some assumptions on the deformation of a plate which reduce
the dimensions of the plate problem from three to two and greatly simplify
the governing equations. However, these assumptions inherently result in
errors which can be significant when the thickness-to-length ratio increases.

Using the theory of elasticity, Srinivas et al. [3] developed an exact three-
dimensional solution for bending, vibration and buckling of simply supported
thick orthotropic rectangular plates. Their results have been widely used as
benchmark solutions by many researchers. Liew et al. [4] developed a con-
tinuum three-dimensional Ritz formulation based on the three-dimensional
elasticity theory and the Ritz minimum energy principle for the vibration
analysis of homogeneous, thick, rectangular plates with arbitrary combina-
tion of boundary constraints. The formulation was employed to study the
effects of geometric parameters on the overall normal mode characteristics
of simply supported plates, and the effects of in-plane inertia on the vibra-
tion frequencies of plates with different thicknesses [5]. This formulation was
also applied specifically to investigate the effects of boundary constraints
and thickness ratios on the vibration responses of these plates [6]. Liew and
Teo [7] employed the differential quadrature (DQ) method for the vibration
analysis of three-dimensional elasticity plates with a high degree of accuracy.

When dealing with highly orthotropic composite plates, the higher-order
shear deformation theories (HSDT) is more favourable than the FSDT be-
cause the former can yield highly accurate results without the need for a
shear correction factor. Reddy and Phan [8] employed the HSDT [9] to de-
termine the natural frequencies and buckling loads of elastic plates. Their
exact solutions obtained were more accurate than those of the FSDT and
CLPT when compared with the exact solutions by three-dimensional elastic-
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ity theory. Lim et al. [10, 11] developed an energy-based higher-order plate
theory in association with geometrically oriented shape function to inves-
tigate the free vibration of thick shear deformable, rectangular plates with
arbitrary combinations of boundary constraints. This method required con-
siderably less memory than the direct three-dimensional elasticity analysis
while maintaining the same level of accuracy. Their numerical results showed
that for transverse-dominant vibration modes, an increase in thickness results
in higher frequency while for inplane-dominant vibration modes, the effects
of variation in thickness is insignificant.

It is highly desirable to develop an efficient numerical method to investi-
gate and optimize the characteristic properties of laminated plates instead of
using experimental testing due to time and cost efficiencies. Because of the
limitations of analytical methods in practical applications, numerical meth-
ods are becoming the most effective tools to solve many industrial problems.
Finite element method (FEM) is a powerful method used to solve most lin-
ear and nonlinear practical engineering problems in solid and fluid mechanics.
However, FEM has some limitations which include time-consuming task of
mesh generation, low accuracy in stress calculation, low accuracy when solv-
ing large deformation problems due to element distortions, difficulty in simu-
lating problems with strain localization and shear band formation due to dis-
continuities that may not coincide with some of the original nodal lines [12].
Meshless method has great potential to overcome those challenges.

There have been a number of meshless methods developed in the past
years. Nayroles el al. [13] introduced the diffuse element method (DEM), a
first meshless method using moving least square (MLS) approximations to
construct the shape function. The finite element mesh is totally unnecessary
in this method. Belytschko et al. [14] proposed an element-free Galerkin
(EFG) method based on the DEM with modifications in the implementation
to increase the accuracy and the rate of convergence. In their work, the La-
grange multipliers were used to impose essential boundary conditions. Atluri
and Zhu [15] presented a meshless local Petrov-Galerkin (MLPG) approach
based on a local symmetric weak form and the MLS approximation, which
is a truly meshless method. The essential boundary conditions in their for-
mulation were enforced by a penalty method. Liu and Gu [16] developed
a point interpolation method (PIM) to construct polynomial interpolation
functions with delta function property so the essential boundary conditions
can be imposed as done in the conventional FEM with ease. However, the
problem of singular moment matrix can occur, resulting in termination of
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the computation. A point interpolation method based on RBF (RPIM) was
proposed by Wang and Liu [17] to produce a non-singular moment matrix.
Liew et al. [18, 19] proposed a numerical algorithm based on the RPIM for
the buckling analysis of rectangular, circular, trapezoidal and skew Mindlin
plates that are subjected to non-uniformly distributed in-plane edge loads.
In the PIM and RPIM, the compatibility characteristic is not ensured so
the field function approximated could be discontinuous when nodes enter or
leave the moving support domain. Liu et al. suggested a linearly conforming
point interpolation method (RC-PIM) [20] with a simple scheme for local
supporting node selection, and a linearly conforming radial point interpola-
tion method (RC RPIM) [21] to overcome the singular moment matrix issue
and ensure the compatibility of the displacement.

In 1990, Kansa proposed a collocation scheme based on multiquadric
(MQ) radial basis functions for the numerical solution of partial differen-
tial equations (PDEs) [22, 23]. Their numerical results showed that MQ
scheme yielded an excellent interpolation and partial derivative estimates
for a variety of two-dimensional functions over both gridded and scattered
data. The main drawback of RBF based methods is the lack of mathemat-
ical theories for finding the appropriate values of network parameters. For
example, the RBF width, which strongly affects the performance of RBF
networks, has still been chosen either by empirical approaches or by opti-
mization techniques. The use of RBF based method for the free vibration
analysis of laminated composite plates has been previously studied by nu-
merous authors. The MQ-RBF procedure was used to predict the free vibra-
tion behaviour of moderately thick symmetrically laminated composite plates
by Ferreira et al. [24]. The free vibration analysis of Timoshenko beams
and Mindlin plates using Kansa’s non-symmetric RBF collocation method
was performed by Ferreira and Fasshauer [25]. Ferreira and Fasshauer [26]
showed that the combination of RBF and pseudospectral methods produces
highly accurate results for free vibration analysis of symmetric composite
plates. Liew [27] proposed a p-Ritz method with high accuracy, but, it is
difficult to choose the appropriate trial functions for complicated problems.
Karunasena et al. [28, 29] investigated natural frequencies of thick arbitrary
quadrilateral plates and shear-deformable general triangular plates with ar-
bitrary combinations of boundary conditions using the pb-2 Rayleigh-Ritz
method in conjunction with the FSDT. Liew et al. [30] proposed the har-
monic reproducing kernel particle method for the free vibration analysis of
rotating cylindrical shells. This technique provides ease of enforcing vari-
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ous types of boundary conditions and concurrently is able to capture the
travelling modes. Zhao et al. [31] employed the reproducing kernel particle
estimation in hybridized form with harmonic functions to study the frequency
characteristics of cylindrical panels. Liew et al. [32] presented a meshfree ker-
nel particle Ritz method (kp-Ritz) for the geometrically nonlinear analysis
of laminated composite plates with large deformations, which is based on
the FSDT and the total Lagrangian formulation. Liew et al. [33] adopted a
moving least squares differential quadrature (MLSDQ) method for predicting
the free vibration behaviour of square, circular and skew plates with various
boundary conditions. A meshfree method based on the reproducing kernel
particle approximate for the free vibration and buckling analyses of shear-
deformation plates was conducted by Liew [34]. In this method, the essential
boundary conditions were enforced by a transformation technique.

As an alternative to the conventional differentiated radial basis function
networks (DRBFN) method, Mai-Duy and Tran-Cong [35] proposed the use
of integration to construct the RBFN expressions (the IRBFN method) for
the approximation of a function and its derivatives and for the solution of
PDEs. The use of integration instead of conventional differentiation to con-
struct the RBF approximations significantly improved the stability and accu-
racy of the numerical solution. The improvement is attributable to the fact
that integration is a smoothing operation and is more numerically stable.
The numerical results showed that the IRBFN method achieves superior ac-
curacy [35, 36]. Mai-Duy and Tran-Cong [37] presented a mesh-free IRBFN
method using Thin Plate Splines (TPSs) for numerical solution of differen-
tial equations (DEs) in rectangular and curvilinear coordinates. The IRBFN
was also used to simulate the static analysis of moderately-thick laminated
composite plates using the FSDT [38].

A one-dimensional integrated radial basis function networks (1D-IRBFN)
collocation method for the solution of second- and fourth-order PDEs was
presented by Mai-Duy and Tanner [39]. Along grid lines, 1D-IRBFN are con-
structed to satisfy the governing DEs together with boundary conditions in
an exact manner. The 1D-IRBFN method was further developed for the sim-
ulation of fluid flow problems. In the present study, the 1D-IRBFN method
is extended to the case of free vibration of composite laminates based on
FSDT. A number of examples are considered to investigate the effects of var-
ious plate shapes, length-to-width ratios, thickness-to-span ratios, material
properties and boundary conditions on natural frequencies of composite lam-
inated plates. The results obtained are compared with available published
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results from different methods.
The paper is organised as follows. Section 2 describes the governing

equations based on FSDT and boundary conditions for the free vibration of
laminated composite plates. The 1D-IRBFN-based Cartesian-grid technique
is presented in Section 3. The discretisation of the governing equations and
boundary conditions is described in Section 4. The proposed technique is
then validated through several test examples in Section 5. Section 6 concludes
the paper.

2. Governing equations

2.1. First-order shear deformation theory

In the FSDT [1], the transverse normals do not remain perpendicular to
the midsurface after deformation due to the effects of transverse shear strains.
The inextensibility of transverse normals requires w not to be a function of
the thickness coordinate z. The displacement field of the FSDT at time t is
of the form

u(x, y, z, t) = u0(x, y, t) + zφx(x, y, t), (1)

v(x, y, z, t) = v0(x, y, t) + zφy(x, y, t), (2)

w(x, y, z, t) = w0(x, y, t), (3)

where (u0, v0, w0) denotes the vector of displacement of a point on the plane
z = 0, and φx and φy are, respectively, the rotations of a transverse normal
about the y− and x− axes.

Since the transverse shear strains are assumed to be constant through
the laminate thickness, it follows that the transverse shear stresses will also
be constant. However, in practice, the transverse shear stresses vary at least
quadratically through layer thickness. This discrepancy between the actual
stress state and the constant stress state predicted by the FSDT is often
corrected by a parameter Ks, called the shear correction coefficient. It is
noted that the natural frequencies of the plate are affected by the factor Ks

and the rotary inertia (RI). The smaller the values of Ks and RI, the smaller
the frequencies will be.

In this paper we consider a symmetrically laminated plate with the co-
ordinate system origined at the midplane of the laminate, where each layer
of the laminate is orthotropic with respect to the x− and y− axes and all
layers are of equal thickness. For symmetric laminates, the displacements
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u0 and v0 can be disregarded due to the uncoupling between extension and
bending actions. The equations of motion for the free vibration of symmetric
cross-ply laminated plates can be expressed by the dynamic version of the
principle of virtual displacements as

KsA55

(
∂2w

∂x2
+
∂φx

∂x

)
+KsA44

(
∂2w

∂y2
+
∂φy

∂y

)
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∂2w

∂t2
, (4)

D11
∂2w

∂x2
+D12

∂2φy

∂x∂y
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(
∂2φx

∂y2
+
∂2φy

∂x∂y

)
−KsA55

(
∂w

∂x
+ φx

)
= I2

∂2φx

∂t2
,

(5)

D66

(
∂2φx

∂x∂y
+
∂2φy

∂x2

)
+D12

∂2φx

∂y2
+D22

∂2φy

∂y2
−KsA44

(
∂w

∂y
+ φy

)
= I2

∂2φy

∂t2
,

(6)

where I0 and I2 are the mass inertia tensor components defined as

I0 = ρh, (7)

I2 =
ρh3

12
, (8)

in which ρ and h denote the density and the total thickness of the com-
posite plate, respectively; and Aij and Dij are the extensional and bending
stiffnesses given by

Aij =
N∑

k=1

Q̄
(k)
ij (zk+1 − zk), (9)

Dij =
1

3

N∑

k=1

Q̄
(k)
ij (z3

k+1
− z3

k), (10)

in which Q̄
(k)
ij is the transformed material plane stress-reduced stiffness matrix

of the layer k.
In (9) and (10), the matrix Q̄

(k)
ij can be obtained through

Q̄ = TQmTT , (11)
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where T is the transformation matrix given by

T =




cos2 θ sin2 θ 0 0 − sin 2θ
sin2 θ cos2 θ 0 0 sin 2θ

0 0 cos θ sin θ 0
0 0 − sin θ cos θ 0

sin θ cos θ − sin θ cos θ 0 0 cos2 θ − sin2 θ



, (12)

and Qm is the material plane stress-reduced stiffness

Qm =




E1/(1 − ν12.ν21) ν12.E2/(1 − ν12.ν21) 0 0 0
ν12.E2/(1 − ν12.ν21) E2/(1 − ν12.ν21) 0 0 0

0 0 G23 0 0
0 0 0 G13 0
0 0 0 0 G12



,

(13)
in which E1 and E2 are the Young’s moduli for a layer parallel to fibres
and perpendicular to fibres, respectively, ν12 and ν21 are Poisson’s ratios, and
G23, G13, andG12 are shear moduli in the 2 − 3, 1 − 3, and 1 − 2 planes, re-
spectively.

Expressing the variables w, φx, andφy in the following harmonic forms

w(x, y, t) = W (x, y)eiωt, (14)

φx(x, y, t) = Ψx(x, y)e
iωt, (15)

φy(x, y, t) = Ψy(x, y)e
iωt, (16)

the equations of motion (4), (5) and (6) become

KsA55

(
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+
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)
= −I0ω
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+ Ψx

)
= −I2ω
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(18)

D66

(
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∂x∂y
+
∂2Ψy

∂x2

)
+D12

∂2Ψx

∂y2
+D22

∂2Ψy

∂y2
−KsA44

(
∂w
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+ Ψy
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= −I2ω

2Ψy,

(19)

where ω is the frequency of natural vibration.
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2.2. Boundary conditions

The boundary conditions for a simply supported or clamped edge can be
described as follows.

• Simply supported case: There are two kinds of simply support bound-
ary conditions for the FSDT plate models.

– The first kind is the soft simple support (SS1)

w = 0; Mns = 0; Mn = 0. (20)

– The second kind is the hard simple support (SS2)

w = 0; φs = 0; Mn = 0. (21)

The hard simple support is considered in this paper. From (21), we
have the following relations

w = 0, on Γ, (22)

nxφy − nyφx = 0, on Γ, (23)

n2
xMxx + 2nxnyMxy + n2

yMy = 0, on Γ, (24)

in which nx and ny are the direction cosines of a unit normal vector at
a point on the plate boundary Γ.

Equations (24) can be expressed as

(
n2

xD11 + n2
yD12

) ∂φx

∂x
+2nxnyD66

(
∂φx

∂y
+
∂φy

∂x

)
+
(
n2

xD12 + n2
yD22

) ∂φy

∂y
= 0.

(25)

• Clamped case:
w = 0; φn = 0; φs = 0. (26)

Clamped boundary conditions (26) can be described as follows.

w = 0, on Γ, (27)

φx = 0, on Γ, (28)

φy = 0, on Γ. (29)

In (20), (21) and (26), the subscripts n and s represent the normal and
tangential directions of the edge, respectively; Mn and Mns denotes the nor-
mal bending moment and twisting moment, respectively; and φn and φs are
rotations about the tangential and normal coordinates on the laminate edge.
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3. One-dimensional indirect/integrated radial basis function net-
works

In the remainder of the article, we use

• the notation [̂ ] for a vector/matrix [ ] that is associated with a grid
line,

• the notation [̃ ] for a vector/matrix [ ] that is associated with the whole
set of grid lines,

• the notation [ ](η,θ) to denote selected rows η and columns θ of the
matrix [ ],

• the notation [ ](η) to pick out selected components η of the vector [ ],

• the notation [ ](:,θ) to denote all rows and pick out selected columns θ
of the matrix [ ], and

• the notation [ ](η,:) to denote all columns and pick out selected rows η
of the matrix [ ].

The domain of interest is discretised using a Cartesian grid, i.e. an array
of straight lines that run parallel to the x− and y− axes. The dependent
variable u and its derivatives on each grid line are approximated using an
IRBF interpolation scheme as described in the remainder of this section.

3.1. IRBFN expressions on a grid line (1D-IRBF scheme)
Consider an x− grid line, e.g. [j], as shown in Fig. 1. The variation of

u along this line is sought in the IRBF form. The second-order derivative
of u is decomposed into RBFs; the RBF network is then integrated once
and twice to obtain the expressions for the first-order derivative of u and the
solution u itself,

∂2u(x)

∂x2
=

N
[j]
x∑

i=1

w(i)g(i)(x) =

N
[j]
x∑

i=1

w(i)H
(i)
[2] (x), (30)

∂u(x)

∂x
=

N
[j]
x∑

i=1

w(i)H
(i)
[1] (x) + c1, (31)

u(x) =

N
[j]
x∑

i=1

w(i)H
(i)
[0] (x) + c1x+ c2, (32)
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where N
[j]
x is the number of nodes on the grid line [j]; {w(i)}N

[j]
x

i=1 are RBF

weights to be determined;
{
g(i)(x)

}N
[j]
x

i=1
=
{
H

(i)
[2] (x)

}N
[j]
x

i=1
are known RBFs,

e.g., for the case of multiquadrics g(i)(x) =
√

(x− x(i))2 + a(i)2, a(i) - the

RBF width; H
(i)
[1] (x) =

∫
H

(i)
[2] (x)dx; H

(i)
[0] (x) =

∫
H

(i)
[1] (x)dx; and c1 and c2 are

integration constants which are also unknown.
It is more convenient to work in the physical space than in the network-

weight space. The RBF coefficients including two integration constants can
be transformed into the meaningful nodal variable values through the follow-
ing relation

û = Ĥ

(
ŵ
ĉ

)
, (33)

where Ĥ is an N
[j]
x × (N

[j]
x + 2) matrix whose entries are Ĥij = H

[j]
[0](x

(i)),

û = (u(1), u(2), ..., u(N
[j]
x ))T , ŵ = (w(1), w(2), ..., w(N

[j]
x ))T and ĉ = (c1, c2)

T .
There are two possible transformation cases.

Non-square conversion matrix (NSCM): The direct use of (33) leads to
an underdetermined system of equations

û = Ĥ

(
ŵ
ĉ

)
= Ĉ

(
ŵ
ĉ

)
, (34)

or (
ŵ
ĉ

)
= Ĉ−1û, (35)

where Ĉ = Ĥ is the conversion matrix whose inverse can be found using the
SVD technique.

Square conversion matrix (SCM): Due to the presence of c1 and c2, one
can add two additional equations of the form

f̂ = K̂

(
ŵ
ĉ

)
(36)

to equation system (34). For example, in the case of Neumann boundary
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conditions, this subsystem can be used to impose derivative boundary values

f̂ =

(
∂u
∂x

(x(1))
∂u
∂x

(x(N
[j]
x ))

)
, (37)

K̂ =


 H

(1)
[1] (x(1)) H

(2)
[1] (x(1)) ... H

(N
[j]
x )

[1] (x(1)) 1 0

H
(1)
[1] (x(N

[j]
x )) H

(2)
[1] (x(N

[j]
x )) ... H

(N
[j]
x )

[1] (x(N
[j]
x )) 1 0


 . (38)

The conversion system can be written as
(
û

f̂

)
=

[
Ĥ

K̂

](
ŵ
ĉ

)
= Ĉ

(
ŵ
ĉ

)
, (39)

or (
ŵ
ĉ

)
= Ĉ−1

(
û

f̂

)
. (40)

It can be seen that (35) is a special case of (40), where f̂ is simply set to
null. By substituting equation (40) into equations (30) and (31), the second-
and first-order derivatives of the variable u are expressed in terms of nodal
variable values

∂2u(x)

∂x2
=
(
H

(1)
[2] (x), H

(2)
[2] (x), ..., H

(N
[j]
x )

[2] (x), 0, 0
)

Ĉ−1

(
û

f̂

)
, (41)

∂u(x)

∂x
=
(
H

(1)
[1] (x), H

(2)
[1] (x), ..., H

(N
[j]
x )

[1] (x), 1, 0
)

Ĉ−1

(
û

f̂

)
, (42)

or

∂2u(x)

∂x2
= D̄2xû+ k2x(x), (43)

∂u(x)

∂x
= D̄1xû+ k1x(x), (44)

where k1x and k2x are scalars whose values depend on x, f1 and f2; and D̄1x

and D̄2x are known vectors of length N
[j]
x .

Application of equation (43) and (44) to boundary and interior points on
the grid line [j] yields

∂̂2u[j]

∂x2
= D̂

[j]
2xû+ k̂

[j]
2x, (45)

∂̂u[j]

∂x
= D̂

[j]
1xû+ k̂

[j]
1x, (46)
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where D̂
[j]
1x and D̂

[j]
2x are known matrices of dimension N

[j]
x ×N

[j]
x and k̂

[j]
1x and

k̂
[j]
2x are known vectors of length N

[j]
x .

Similarly, along a vertical line [j] parallel to the y− axis, the values of the
second- and first-order derivatives of u with respect to y at the nodal points
can be given by

∂̂2u[j]

∂y2
= D̂

[j]
2yû+ k̂

[j]
2y , (47)

∂̂u[j]

∂y
= D̂

[j]
1yû+ k̂

[j]
1y . (48)

3.2. 1D-IRBFN expressions over the whole computational domain

The values of the second- and first-order derivatives of u with respect to
x at the nodal points over the problem domain can be given by

∂̃2u

∂x2
= D̃2xũ+ k̃2x, (49)

∂̃u

∂x
= D̃1xũ+ k̃1x, (50)

where

ũ =
(
u(1), u(2), ..., u(N)

)T
, (51)

∂̃2u

∂x2
=

(
∂2u(1)

∂x2
,
∂2u(2)

∂x2
, ...,

∂2u(N)

∂x2

)T

, (52)

∂̃u

∂x
=

(
∂u(1)

∂x
,
∂u(2)

∂x
, ...,

∂u(N)

∂x

)T

; (53)

and D̃1x and D̃2x are known matrices of dimension N × N ; k̃1x and k̃2x are
known vectors of length N ; and N is the total number of nodal points. The
matrices D̃1x and D̃2x and the vectors k̃1x and k̃2x are formed as follows.

D̃2x(idj,idj) = D̂
[j]
2x, (54)

D̃1x(idj,idj) = D̂
[j]
1x, (55)

k̃2x(idj) = k̂
[j]
2x, (56)

k̃1x(idj) = k̂
[j]
1x, (57)
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where idj is the index vector indicating the location of nodes on the [j] grid
line over the whole grid.

Similarly, the values of the second- and first-order derivatives of u with
respect to y at the nodal points over the problem domain can be given by

∂̃2u

∂y2
= D̃2yũ+ k̃2y, (58)

∂̃u

∂y
= D̃1yũ+ k̃1y. (59)

The mixed partial derivative of ũ can be given by

∂2ũ

∂x∂y
=

1

2

(
D̃1xD̃1y + D̃1yD̃1x

)
ũ+ k̃2xy = D̃2xyũ+ k̃2xy, (60)

where k̃2xy is a known vector of length N .
In the special case of a rectangular domain and NSCM, the nodal values

of the derivatives of u over the whole domain can be simply computed by
means of Kronecker tensor products as follows.

∂̃2u

∂x2
=
(
D̂

[j]
2x ⊗ Iy

)
û = D̃2xû, (61)

∂̃u

∂x
=
(
D

[j]
1x ⊗ Iy

)
û = D̃1xû, (62)

∂̃2u

∂y2
=
(
D

[j]
2y ⊗ Ix

)
û = D̃2yû, (63)

∂̃u

∂y
=
(
D

[j]
2y ⊗ Ix

)
û = D̃1yû, (64)

where Ix and Iy are the identity matrices of dimension Nx × Nx and Ny ×
Ny, respectively; D̃2x, D̃1x, D̃2y and D̃1y are known matrices of dimension

NxNy × NxNy; ũ =
(
u(1), u(2), ..., u(NxNy)

)T
; and Nx and Ny are the number

of nodes in the x− and y− axes, respectively.

4. One-dimensional IRBF discretisation of laminated composite
plates

Let the subscripts bp and ip represent the location indices of boundary
and interior points, Nbp the number of boundary points and Nip the number
of interior points.
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Making use of (49), (50), (58), (59) and (60) and collocating the governing
equations (17), (18) and (19) at the interior points result in

[
R̃ − λ S̃

]
φ̃ = 0, (65)

where

λ = ω2, (66)

R̃ =




(
kA55D̃

W
2x(ip,:)

+kA44D̃
W
2y(ip,:)

)
kA55D̃

Ψx

1x(ip,:) kA44D̃
Ψy

1y(ip,:)

−kA55D̃
W
1x(ip,:)

(
D11D̃

Ψx

2x(ip,:)

+D66D̃
Ψx

2y(ip,:) − kA55I

)
(D12 +D66)D̃

Ψy

2xy(ip,:)

kA44D̃
W
1y(ip,:) D66D̃

Ψx

2xy(ip,:) +D12D̃
Ψx

2y(ip,:)

(
D66D̃

Ψy

2x(ip,:)

+D22D̃
Ψy

2y(ip,:) − kA44I

)




,

(67)

S̃ =



I0I 0 0
0 I2I 0
0 0 I2I


 , (68)

φ̃ =



W̃

ψ̃x

ψ̃y


 , (69)

and I and 0 are identity and zero matrices of dimensions Nip×N , respectively.
The system (65) can be expressed as

L̃Gφ̃ = λφ̃, (70)

where
L̃G = S̃−1R̃. (71)

Making use of (50) and (59) and collocating the expressions (22), (23)
and (25) at the boundary points on Γ yield

L̃Bφ̃ = 0, (72)
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where

L̃B =




I 0 0
0 −nyI nxI

0

( (
n2

xD11 + n2
yD12

)
D̃1x(ip,:)

+2nxnyD66D̃1y(ip,:)

) ( (
n2

xD12 + n2
yD22

)
D̃1y(ip,:)

+2nxnyD66D̃1x(ip,:)

)


 .

(73)
By combining (70) and (72), one is able to obtain the discrete form of 1D-
IRBFN for laminated composite plates

L̃Gφ̃ = λφ̃, (74)

L̃Bφ̃ = 0, (75)

or

[
L̃G(:,ip) L̃G(:,bp)

]( φ̃(ip)

φ̃(bp)

)
= λφ̃(ip), (76)

[
L̃B(:,ip) L̃B(:,bp)

]( φ̃(ip)

φ̃(bp)

)
= 0. (77)

Solving (77) gives

φ̃(bp) = −L̃−1
B(:,bp)L̃B(:,ip)φ̃(ip). (78)

Substitution of (78) into (76) leads to the following system

L̃φ̃(ip) = λφ̃(ip), (79)

where L̃ is a matrix of dimensions Nip ×Nip, defined as

L̃ = L̃G(:,ip) − L̃G(:,bp)L̃
−1
B(:,bp)L̃B(:,ip), (80)

from which the natural frequencies and mode shapes of laminated composite
plates can be obtained.

5. Numerical results and discussion

Three examples are considered here to study the performance of the
present method. Unless otherwise stated, all layers of the laminate are as-
sumed to be of the same thickness, density and made of the same linearly
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elastic composite material. The material parameters of a layer used here
are: E1/E2 = 40; G12 = G13 = 0.6E2; G23 = 0.5E2; ν12 = 0.25, where the
subscripts 1 and 2 denote the directions parallel and perpendicular to the
fibre direction in a layer. The ply angle of each layer measured from the
global x− axis to the fibre direction is positive if measured clockwise, and
negative if measured anti-clockwise. The eigenproblem (79) is solved using
MATLAB to obtain the natural frequencies and mode shapes of laminated
composite plates. In order to compare with the published results of Ferreira
and Fasshauer [26], Liew [27], Liew et al. [33] and Nguyen-Van et al. [40], the
same shear correction factors and nondimensionalised natural frequencies are
also employed here:

• Case 1: Shear correction factor Ks = π2/12
Nondimensionalised natural frequency: ω̄ = ω (b2/π2)

√
ρh/D0 with

D0 = E2h
3/12(1 − ν12ν21)

• Case 2: Shear correction factor Ks = 5/6
Nondimensionalised natural frequency: ω̄ = (ωb2/h)

√
ρ/E2

where b is the length of the vertical edges of square/rectangular plates or
the diameter of circular plates. Boundary conditions can be imposed in the
following ways:

• Approach 1: through the conversion process (39).

• Approach 2: by the algorithm (72) - (80).

5.1. Example 1: Rectangular laminated plates

This example investigates the characteristics of free vibration of rectangu-
lar cross-ply laminated plates with various thickness-to-length ratios, bound-
ary conditions, lay-up stacking sequences and material properties. Both
Approach 1 and Approach 2 are applied here to implement the boundary
conditions.

5.1.1. Convergence study

Table 1 shows the convergence study of nondimensionalised natural fre-
quencies. It can be seen that results by Approach 1 are slightly more accurate
than those of Approach 2. The condition numbers in Approach 1 are smaller
than those in Approach 2.
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Table 2 presents the convergence study of nondimensionalised natural
frequencies for simply supported three ply [0o/90o/0o] square and rectangular
laminated plates for two cases of thickness to span ratios t/b = 0.001 and 0.2,
while the corresponding convergence study for clamped laminated plates is
presented in Table 3. Table 2 shows that faster convergence can be obtained
for higher t/b ratios irrespective of a/b ratios. It can be seen that accuracy of
the current results is generally higher than that of Ferreira and Fasshauer [26]
who used RBF-pseudospectral method and nearly equal to that of Liew [27] in
the case of t/b = 0.2. For the thin plate case t/b = 0.001, the p-Ritz method
results are more accurate than RBF-pseudospectral ones and the IRBF ones
in comparison with the exact solution. Specifically, the IRBF results of
nondimensionalised fundamental natural frequency deviate by 0.32% from
the exact solution for the simply supported plate, and by 0.05% from the
p-Ritz method results for the clamped plate in the cases of t/b = 0.001 and
a/b = 1.

5.1.2. Thickness-to-length ratios

Table 4 shows the effect of thickness-to-length ratio t/b on nondimension-
alised fundamental frequency of the simply supported four-ply [0o/90o/90o/0o]
square laminated plate in comparison with other published results. It can
be seen that the fundamental frequency decreases with increasing t/b ratios.
The numerical results obtained are in good agreement with the published
results of Liew [27] and Ferreira and Fasshauer [26] and the exact solution
derived from the FSDT plate model [1]. Fig. 2 describes errors of nondimen-
sionalised fundamental frequency ε = (ω̄ − ω̄E)/ω̄E (ω̄E: nondimensionalised
value of the exact fundamental frequency) with respect to thickness-to-span
ratios t/b for the simply supported four-ply [0o/90o/90o/0o] square laminated
plate in comparison with available published results. This figure shows that
the accuracy of the present method is higher than that of the others for
t/b ratios larger than 0.04. The errors reduce with increasing t/b ratios for
IRBFN and RBF-pseudospectral methods, indicating that these methods are
more accurate for thick plates than for thin plates. When the t/b ratio is
smaller than 0.04, the accuracy of p-Ritz method is higher than that of IRBF
and RBF-pseudospectral methods.

5.1.3. Boundary conditions

Tables 5 and 6 show the effect of t/b ratio on nondimensionalised natural
frequencies of three-ply [0o/90o/0o] and four-ply [0o/90o/90o/0o] rectangular
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laminated plates with boundary conditions SSSS, CCCC and SCSC. The first
eight nondimensionalised natural frequencies are reported in these tables.
It can be seen that the nondimensionalised natural frequencies reduce with
increasing t/b ratios due to the effects of shear deformation and rotary inertia.
These effects are more pronounced in higher modes. The effect of boundary
conditions on the natural frequencies can also be seen in these tables. The
higher constraints at the edges results in higher natural frequencies for the
laminated plates as shown in Tables 5 and 6, i.e., the nondimensionalised
natural frequency of SCSC plates is higher than that of SSSS plates, but lower
than that of CCCC plates. Fig. 3-5 show mode shapes of a simply supported
three-ply [0o/90o/0o] square laminated plate, a simply supported three-ply
[0o/90o/0o] rectangular with a/b = 2 laminated plate, and a clamped three-
ply [0o/90o/0o] square laminated plate, respectively, in the case of t/b = 0.2
and using a grid of 15 × 15. The current results are fairly reasonable in
comparison with available published results [26].

5.1.4. Material property

Tables 7 presents the effect of modulus ratio E1/E2 on the nondimension-
alised fundamental frequency of the simply supported four-ply [0o/90o/90o/0o]
square laminated plate. In order to compare with the available published re-
sults, the shear correction factor of 5/6 and thickness-to-length ratio of 0.2
are used in this example. It can be seen that the fundamental frequency in-
creases with increasing modulus ratio. Fig. 6 shows the errors of nondimen-
sionalised fundamental frequency (ε = (ω̄ − ω̄E)/ω̄E) with respect to mod-
ulus ratio E1/E2 for the simply supported four-ply laminated square plate
[0o/90o/90o/0o] in comparison with existing published results. The accuracy
of current method is not only fairly high but also very stable in a wide range
of E1/E2 ratio as shown in this figure.

5.2. Example 2: Circular laminated plates

Free vibration analysis for [βo/− βo/− βo/βo] circular laminated plates
with diameter b and thickness t shown in Fig. 7 is studied in this sec-
tion. Boundary conditions are imposed with Approach 2. The thickness-
to-diameter ratio t/b of 0.1, various fibre orientation angles with β = 0o

and 45o, and modulus ratio (E1/E2) of 40 are considered. Tables 8 presents
the convergence study of nondimensionalised natural frequencies for various
mode numbers for the simply supported four-ply [βo/− βo/− βo/βo] circu-
lar laminated plate in comparison with other published results, while the
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corresponding convergence study for a clamped four-ply [βo/− βo/− βo/βo]
circular laminated plate is given in Tables 9. It can be seen that the current
results are in good agreement with those of Liew et al. [33] who used a mov-
ing least squares differential quadrature method (MLSDQ). The numerical
solution converges faster for the clamped circular plate than for the simply
supported one. Tables 10 shows the effect of thickness-to-diameter ratio on
the nondimensionalised frequencies for various modes of the clamped four ply
[βo/− βo/− βo/βo] circular laminated plate. A grid is taken to be 15×15 in
this computation. Fig. 8 presents the mode shapes of the simply supported
four-ply [45o/− 45o/− 45o/45o] circular laminated plate with t/b = 0.1.

5.3. Example 3: Square isotropic plate with a square hole

Before investigating the free vibration of a square isotropic plate with a
square hole for which there is currently no exact solution, a simply supported
square isotropic plate is considered to validate the results of both 1D-IRBF
method and Strand7 (Finite element analysis system) [41]. The results by
the 1D-IRBF for complete geometries can then be compared with those ob-
tained by Strand7. Approach 1 is employed here to implement the boundary
conditions. Tables 11 presents the comparison of nondimensionalised natu-
ral frequencies between 1D-IRBF, Strand7 and exact results for the simply
supported square isotropic plate with thickness to length ratio t/b of 0.1.
Converged solutions are obtained on a grid of 15 × 15 for the IRBF method
and of 21 × 21 for Strand7. This table shows that the IRBF result is more
accurate than Strand7’s in comparison with the exact solution of Reddy [1].
Next, the methods are used to analyse the simply supported square isotropic
plate with a square hole. All edges of the hole are also subjected to the
simply supported boundary condition. Tables 12 shows the nondimension-
alised natural frequencies for various mode numbers of the simply supported
square isotropic plate with a square hole. In this computation, the grid is
taken to be 17× 17 for the IRBF method and 41× 41 for Strand7 to obtain
the converged solutions. It can be seen that good agreement between the
1D-IRBF and Strand7 results is obtained for various mode numbers. Fig. 9
shows the first four mode shapes of the simply supported square isotropic
plate with a square hole.
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6. Conclusions

Free vibration analysis of laminated composite plates using FSDT and
1D-IRBFN method is presented. Unlike DRBFNs, IRBFNs are constructed
through integration rather than differentiation, which helps to stabilise a nu-
merical solution and provide an effective way to implement derivative bound-
ary conditions. Cartesian grids are used to discretise both rectangular and
non-rectangular plates. The laminated composite plates with various bound-
ary conditions, length-to-width ratios a/b, thickness-to-length ratios t/b, and
material properties are considered. The obtained numerical results are in
good agreement with the available published results and exact solutions.
Convergence study shows that faster rates are obtained for higher t/b ratios
irrespective of a/b ratios of the rectangular plates. The effects of boundary
conditions on the natural frequencies are also numerically investigated, which
indicates that higher constraints at the edges yield higher natural frequen-
cies. It is also found that the present method is not only highly accurate but
also very stable for a wide range of modulus ratio.
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Table 1: Simply supported three-ply [0o/90o/0o] square laminated plate: convergence study of nondimensionalised natural
frequencies ω̄ = ω

(
b2/π2

)√
ρh/D0 by two approaches, t/b = 0.2.

Mode sequence number
Grid 1 2 3 4 5 6 7 8 Condition number

Approach 1 11x11 3.5939 5.7708 7.3982 8.6896 9.1665 11.2222 11.2406 12.1306 1.36E+05
13x13 3.5939 5.7696 7.3974 8.6881 9.1520 11.2125 11.2283 12.1209 2.43E+05
15x15 3.5939 5.7693 7.3972 8.6878 9.1478 11.2097 11.2248 12.1182 3.95E+05
17x17 3.5939 5.7692 7.3971 8.6876 9.1463 11.2087 11.2235 12.1173 5.65E+05

Approach 2 11x11 3.5932 5.7649 7.3968 8.6851 9.1299 11.2111 11.2184 12.1252 2.60E+05
13x13 3.5935 5.7667 7.3967 8.6860 9.1371 11.2108 11.2162 12.1186 9.21E+05
15x15 3.5937 5.7676 7.3968 8.6865 9.1402 11.2088 11.2186 12.1169 2.45E+06
17x17 3.5937 5.7681 7.3969 8.6868 9.1418 11.2082 11.2199 12.1165 5.12E+06

Exact [1] 3.5939 5.7691 7.3972 8.6876 9.1451 11.2080 11.2230 12.1170

27



Table 2: Simply supported three-ply [0o/90o/0o] rectangular laminated plate: convergence study of nondimensionalised natural
frequencies ω̄ = ω

(
b2/π2

)√
ρh/D0. Note that Ferreira and Fasshauer [26] used 19x19 grid.

Mode sequence number
a/b t/b Grid 1 2 3 4 5 6 7 8
1 0.001 11x11 6.6542 9.4811 15.9414 24.983 26.3037 26.3794 30.0499 37.4233

13x13 6.6427 9.4708 16.0981 25.0024 26.2019 26.3967 30.1587 37.3711
15x15 6.6592 9.4715 16.1697 24.9665 26.3591 26.4214 30.1662 37.5117
17x17 6.6464 9.466 16.2146 24.8845 26.2837 26.534 30.1281 37.5459
Ferreira and Fasshauer [26] 6.618 9.4368 16.2192 25.1131 26.4938 26.6667 30.2983 37.785
Liew (p-Ritz) [27] 6.6252 9.447 16.2051 25.1146 26.82 26.6572 30.3139 37.7854
Exact [1] 6.6252 9.447 16.205 25.115 26.498 26.657 30.314 37.785

0.2 11x11 3.5939 5.7708 7.3982 8.6896 9.1665 11.2222 11.2406 12.1306
13x13 3.5939 5.7696 7.3974 8.6881 9.152 11.2125 11.2283 12.1209
15x15 3.5939 5.7693 7.3972 8.6878 9.1478 11.2097 11.2248 12.1182
17x17 3.5939 5.7692 7.3971 8.6876 9.1463 11.2087 11.2235 12.1173
Ferreira and Fasshauer [26] 3.5934 5.7683 7.3968 8.867 9.1444 11.2078 11.2218 12.1162
Liew (p-Ritz) [27] 3.5939 5.7691 7.3972 8.6876 9.1451 11.208 11.2225 12.1166
Exact [1] 3.5939 5.7691 7.3972 8.6876 9.1451 11.208 11.223 12.117

2 0.001 11x11 2.3728 6.6869 6.7991 8.3924 9.6042 13.9864 14.0793 15.8732
13x13 2.3866 6.7419 6.7685 9.599 14.393 14.533 16.2707 16.3855
15x15 2.3855 6.7206 6.7569 9.575 14.4173 14.5091 16.2875 16.354
17x17 2.3641 6.6461 6.671 9.4658 14.2607 14.386 16.1137 16.2146
Ferreira and Fasshauer [26] 2.367 6.6331 6.6691 9.4676 14.2921 14.3915 16.1009 16.1009
Liew (p-Ritz) [27] 2.3618 6.6252 6.6845 9.447 14.2869 16.3846 16.1347 16.2051
Exact [1] 2.3618 6.6252 6.6645 9.447 14.287 14.3846 16.1347 16.2051

0.2 11x11 1.9393 3.5945 4.8775 5.4933 5.7712 7.125 7.457 8.6202
13x13 1.9393 3.594 4.8761 5.488 5.7697 7.12 7.4118 8.6047
15x15 1.9393 3.5939 4.8757 5.4864 5.7693 7.1186 7.4022 8.6003
17x17 1.9393 3.5939 4.8756 5.4859 5.7692 7.1181 7.3992 8.5987
Ferreira and Fasshauer [26] 1.9387 3.5934 4.875 5.4851 5.7683 7.117 7.3968 8.5969
Liew (p-Ritz) [27] 1.9393 3.5939 4.8755 5.4855 5.7691 7.1177 7.3972 8.5973
Exact [1] 1.9393 3.5939 4.8755 5.4855 5.7691 7.1177 7.3972 8.5973
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Table 3: Clamped three-ply [0o/90o/0o] rectangular laminated plate: convergence study of nondimensionalised natural fre-
quencies ω̄ = ω

(
b2/π2

)√
ρh/D0. Note that Ferreira and Fasshauer [26] used 19x19 grid.

Mode sequence number
a/b t/b Grid 1 2 3 4 5 6 7 8
1 0.001 11x11 14.6844 17.6511 24.1628 33.6225 39.0914 40.7855 44.6870 51.2194

13x13 14.6791 17.6539 24.3897 34.7431 39.1978 40.8591 44.8533 47.8648
15x15 14.6774 17.6470 24.4898 35.2604 39.2082 40.8519 44.8829 48.8046
17x17 14.6722 17.6383 24.5238 35.4471 39.2005 40.8349 44.8746 49.5902
Ferreira and Fasshauer [26] 14.8138 17.6138 24.5114 35.5318 39.1572 40.7685 44.7865 50.3226
Liew (p-Ritz) [27] 14.6655 17.6138 24.5114 35.5318 39.1572 40.7685 44.7865 50.3226

0.2 11x11 4.4466 6.6433 7.7006 9.1870 9.7502 11.4125 11.6550 12.4789
13x13 4.4466 6.6423 7.6998 9.1856 9.7417 11.4033 11.6473 12.4698
15x15 4.4466 6.6420 7.6996 9.1853 9.7393 11.4007 11.6452 12.4673
17x17 4.4466 6.6419 7.6996 9.1852 9.7384 11.3998 11.6444 12.4664
Ferreira and Fasshauer [26] 4.4463 6.6419 7.6995 9.1839 9.7376 11.3994 11.6420 12.4651
Liew (p-Ritz) [27] 4.4468 6.6419 7.6996 9.1852 9.7378 11.3991 11.6439 12.4658

2 0.001 11x11 5.1181 10.5213 10.5731 14.3641 19.1429 19.1845 21.8532 21.8669
13x13 5.1140 10.5488 10.6073 14.3851 19.4334 19.4949 22.0916 22.1203
15x15 5.1140 10.5491 10.6086 14.3748 19.5293 19.6364 22.1586 22.2252
17x17 5.1092 10.5447 10.6042 14.3642 19.5622 19.6912 22.1764 22.2607
Liew (p-Ritz) [27] 5.1051 10.5265 10.5828 14.3241 19.5674 19.7011 22.1483 22.2368

0.2 11x11 3.0454 4.2489 5.7933 5.9109 6.5371 7.7354 7.7434 9.1903
13x13 3.0454 4.2485 5.7921 5.9066 6.5358 7.7016 7.7311 9.1813
15x15 3.0454 4.2484 5.7918 5.9054 6.5354 7.6927 7.7300 9.1787
17x17 3.0453 4.2484 5.7917 5.9050 6.5353 7.6900 7.7295 9.1778
Liew (p-Ritz) [27] 3.0453 4.2484 5.7918 5.9047 6.5354 7.6881 7.7293 9.1762
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Table 4: Simply supported four-ply [0o/90o/90o/0o] square laminated plate: effect of thickness-to-length ratio on the nondi-
mensionalised fundamental frequency ω̄ = ω

(
b2/π2

)√
ρh/D0 in comparison with other published results, using a grid of

13 × 13.

t/b 0.01 0.0200 0.04 0.05 0.08 0.1 0.2 0.25
IRBFN 6.6069 6.5464 6.3378 6.1882 5.6675 5.2991 3.7918 3.2806
Liew (p-Ritz) [27] 6.6060 6.5490 6.3380 6.1930 5.6770 5.3110 3.8070 3.2950
Ferreira and Fasshauer [26] 6.6012 6.5438 6.3300 6.1844 5.6641 5.2960 3.7903 3.2796
Exact [1] 6.6059 6.5483 6.3342 6.1885 5.6675 5.2991 3.7918 3.2806
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Table 5: Three-ply [0o/90o/0o] rectangular laminated plates with various boundary conditions: effect of thickness-to-length
ratio on nondimensionalised natural frequencies ω̄ = ω

(
b2/π2

)√
ρh/D0, using a grid of 13 × 13.

Mode sequence number
B.C. a/b t/b 1 2 3 4 5 6 7 8
SSSS 1 0.001 6.6427 9.4708 16.0981 25.0024 26.2019 26.3967 30.1587 37.3711

0.050 6.1379 10.4509 12.2686 12.2686 14.9902 19.3564 20.7612 24.2701
0.100 5.1662 7.7586 12.9473 13.0492 14.3770 17.8115 19.6232 21.0611
0.150 4.2748 6.6678 9.4883 10.8246 10.8377 13.8136 14.6715 15.5964
0.200 3.5939 5.7696 7.3974 8.6881 9.1520 11.2125 11.2283 12.1209

2 0.001 2.3866 6.7419 6.7685 9.5990 14.3930 14.5330 16.2707 16.3855
0.050 2.3251 6.1374 6.5306 8.9272 11.4203 12.1885 13.4651 14.0131
0.100 2.2213 5.1659 6.0163 7.7562 9.0282 10.8012 11.8844 12.9471
0.150 2.0855 4.2751 5.4445 6.6679 6.8725 8.5997 9.5089 10.0955
0.200 1.9393 3.5940 4.8761 5.4880 5.7697 7.1200 7.4118 8.6047

CCCC 1 0.001 14.6791 17.6539 24.3897 34.7431 39.1978 40.8591 44.8533 47.8648
0.050 10.9532 14.0298 20.3988 23.1977 24.9817 29.2481 29.4098 36.3054
0.100 7.4108 10.3935 13.9134 15.4372 15.8068 19.5792 21.4976 21.6743
0.150 5.5482 8.1470 9.9044 11.6223 12.0305 14.6493 14.9165 16.1288
0.200 4.4466 6.6423 7.6998 9.1856 9.7417 11.4033 11.6473 12.4698

2 0.001 5.1140 10.5488 10.6073 14.3851 19.4334 19.4949 22.0916 22.1203
0.050 4.7791 8.8414 9.8490 12.5142 14.7127 17.3115 17.6840 19.4410
0.100 4.1412 6.6172 8.3548 9.8967 9.9710 12.4472 13.6882 14.1293
0.150 3.5397 5.1819 6.9271 7.4270 7.9371 9.5807 9.8737 11.2359
0.200 3.0454 4.2485 5.7921 5.9066 6.5358 7.7016 7.7311 9.1813

SCSC 1 0.001 7.4203 12.1879 20.6756 25.2643 27.6224 32.1561 33.0467 42.0340
0.050 6.8909 11.2486 18.6756 19.6220 21.8062 26.7027 28.3039 34.3921
0.100 5.8707 9.4551 13.3411 14.8865 15.3416 19.2365 21.2412 21.3301
0.150 4.9054 7.7815 9.7801 11.5266 11.8206 14.5809 14.8557 16.0790
0.200 4.1370 6.4758 7.6655 9.1608 9.6559 11.3907 11.6364 12.4619

2 0.001 3.9926 7.4338 10.0811 12.1967 14.5705 17.8531 19.1850 20.6813
0.050 3.8663 6.8929 9.4403 11.2497 12.5959 15.6065 17.4616 18.6763
0.100 3.5695 5.8712 8.1101 9.4478 9.4554 12.0675 13.3765 14.0007
0.150 3.2017 4.9056 6.7853 7.2757 7.7816 9.4780 9.8001 11.1627
0.200 2.8400 4.1370 5.7076 5.8509 6.4748 7.6786 7.6951 9.1385
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Table 6: Four-ply [0o/90o/90o/0o] rectangular laminated plates with various boundary conditions: effect of thickness-to-length
ratio on nondimensionalised natural frequency ω̄ = ω

(
b2/π2

)√
ρh/D0, using a grid of 13 × 13.

Mode sequence number
B.C. a/b t/b 1 2 3 4 5 6 7 8
SSSS 1 0.001 6.7059 12.0397 18.5141 22.0534 23.3726 30.9024 40.5234 46.2463

0.050 6.1882 11.1007 18.8131 20.7977 21.2014 27.7936 33.4569 34.3564
0.100 5.2991 9.5066 12.8655 15.1686 16.3195 20.1927 20.7286 22.2630
0.150 4.4572 7.9529 9.4381 11.5313 12.8403 14.5062 15.3210 15.9592
0.200 3.7918 6.6928 7.4020 9.2365 10.3860 11.1171 12.1797 12.4176

2 0.001 2.9712 6.6541 9.9919 11.9088 13.6687 17.1813 21.8132 22.9920
0.050 2.9126 6.1904 9.4342 11.1019 11.8981 15.2281 18.9543 19.8146
0.100 2.7737 5.2996 8.2610 8.9588 9.5069 11.9952 12.9014 15.1988
0.150 2.5834 4.4575 6.9071 7.0351 7.9531 9.4582 9.5600 11.5477
0.200 2.3764 3.7920 5.5656 5.9910 6.6929 7.4160 7.8395 9.2477

CCCC 1 0.001 14.6792 20.6910 32.9201 37.6858 40.8607 48.8204 50.1301 62.4002
0.050 11.3126 16.7726 22.9297 26.2097 26.2696 33.2400 37.0230 38.2915
0.100 7.8902 12.1365 13.9783 16.8124 18.3066 21.3197 21.7360 23.3033
0.150 5.9351 9.1657 9.9964 12.2341 13.5791 14.8417 15.8326 16.4452
0.200 4.7214 7.2800 7.7663 9.5679 10.7005 11.3499 12.3791 12.6607

2 0.001 6.5340 10.9786 15.6695 18.2386 19.0696 24.2980 29.7601 29.9145
0.050 6.0569 9.3919 13.6991 14.7711 15.5837 19.4157 21.3104 24.3658
0.100 5.1020 7.1586 10.2158 10.5241 11.7065 13.7411 13.8243 16.6254
0.150 4.1965 5.5887 7.6416 8.1429 8.9674 9.9607 10.3876 12.2071
0.200 3.4843 4.5283 6.0592 6.5421 7.1725 7.7662 8.2341 9.5683

SCSC 1 0.001 8.3209 16.7088 24.5146 29.0185 30.5059 39.2791 48.5199 53.3015
0.050 7.7027 14.6439 19.3708 23.2436 25.0077 31.0304 34.6669 37.0746
0.100 8.2781 16.5860 24.2823 28.7169 30.3815 38.9510 48.8953 52.1464
0.150 8.2468 16.4639 24.0415 28.4167 30.0368 38.4583 48.1057 49.8091
0.200 4.4165 7.1096 7.7278 9.5387 10.5949 11.3260 12.3570 12.6413

2 0.001 5.7766 8.3309 14.5915 15.3473 16.7142 20.8753 24.1291 28.6815
0.050 5.4215 7.7045 12.7571 13.4298 14.6448 17.9696 19.5078 23.3567
0.100 4.6716 6.4819 9.6960 10.3349 11.3299 13.4182 13.4679 16.3745
0.150 3.9187 5.3244 7.4861 8.0180 8.8189 9.8824 10.2831 12.1477
0.200 3.3028 4.4166 6.0005 6.4606 7.1096 7.7412 8.1954 9.5496
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Table 7: Simply supported four-ply [0o/90o/90o/0o] square laminated plate: effect of
modulus ratio E1/E2 on the accuracy of nondimensionalised fundamental frequency
ω̄ =

(
ωb2/h

)√
ρ/E2, t/b = 0.2, using a grid of 13 × 13, Ks = 5/6.

E1/E2

10 20 30 40
IRBFN 8.2982 9.5671 10.3258 10.8540
Nguyen-Van et al. (MISQ20) [40] 8.3094 9.5698 10.3224 10.8471
Liew et al. (MLSDQ) [33] 8.2992 9.5680 10.3270 10.8550
Exact [1] 8.2982 9.5671 10.3260 10.8540
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Table 8: Simply supported four-ply [βo/ − βo/ − βo/βo] circular laminated plate: convergence study of nondimensionalised
natural frequencies for various mode number ω̄ =

(
ωb2/h

)√
ρ/E2, t/b = 0.1, E1/E2 = 40.

Mode sequence number
β Grid 1 2 3 4 5 6 7 8
0o 11x11 16.720 24.339 36.233 41.031 49.048 52.850 60.710 65.304

13x13 16.690 24.157 35.490 40.980 48.803 50.483 59.661 65.091
15x15 16.673 24.083 35.215 40.952 48.707 49.640 59.293 64.959
17x17 16.664 24.046 35.084 40.936 48.659 49.254 59.124 64.833
19x19 16.658 24.025 35.014 40.926 48.631 49.056 59.032 64.709
25x25 16.648 23.999 34.931 40.910 48.592 48.838 58.919 64.473
31x31 16.645 23.990 34.904 40.904 48.576 48.774 58.878 64.384
Nguyen-Van et al. (MISQ20) [40] 16.168 - - - - - - -
Liew et al. (MLSDQ, Nc = 3) [33] 16.512 - - - - - - -
Liew et al. (MLSDQ, Nc = 4) [33] 16.359 - - - - - - -
Liew et al. (MLSDQ, Nc = 5) [33] 16.278 - - - - - - -

45o 11x11 17.653 32.175 40.886 52.412 53.679 64.551 71.124 72.677
13x13 17.643 32.128 40.861 52.116 53.683 64.376 70.979 72.288
15x15 17.637 32.111 40.847 51.997 53.682 64.304 70.898 72.055
17x17 17.634 32.103 40.839 51.939 53.679 64.267 70.852 71.926
19x19 17.631 32.098 40.833 51.907 53.677 64.246 70.824 71.853
25x25 17.627 32.090 40.824 51.866 53.670 64.218 70.784 71.762
31x31 17.625 32.087 40.819 51.850 53.665 64.208 70.767 71.732
Nguyen-Van et al. (MISQ20) [40] 17.162 - - - - - - -
Liew et al. (MLSDQ, Nc = 3) [33] 17.147 - - - - - - -
Liew et al. (MLSDQ, Nc = 4) [33] 17.781 - - - - - - -
Liew et al. (MLSDQ, Nc = 5) [33] 17.141 - - - - - - -
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Table 9: Clamped four-ply [βo/ − βo/ − βo/βo] circular laminated plate: convergence study of nondimensionalised natural

frequencies for various mode number
(
ω̄ =

(
ωb2/h

)√
ρ/E2, t/b = 0.1, E1/E2 = 40

)
.

Mode sequence number
β Grid 1 2 3 4 5 6 7 8
0o 11x11 22.198 29.658 40.987 42.764 50.582 55.075 61.568 65.849

13x13 22.195 29.647 40.929 42.754 50.521 54.906 61.299 65.793
15x15 22.198 29.646 40.921 42.759 50.526 54.876 61.312 65.787
17x17 22.198 29.644 40.918 42.761 50.523 54.865 61.304 65.786
Nguyen-Van et al. (MISQ20) [40] 22.123 29.768 41.726 42.805 50.756 56.950 - -
Liew et al. (MLSDQ, Nc = 3) [33] 22.211 29.651 41.101 42.635 50.309 54.553 60.719 64.989
Liew et al. (MLSDQ, Nc = 4) [33] 22.219 - - - - - - -
Liew et al. (MLSDQ, Nc = 5) [33] 22.199 - - - - - - -

45o 11x11 24.737 39.112 43.638 57.190 57.254 65.693 74.254 75.149
13x13 24.737 39.101 43.630 57.135 57.194 65.640 74.029 74.854
15x15 24.737 39.099 43.630 57.138 57.185 65.630 74.035 74.823
17x17 24.737 39.099 43.630 57.136 57.181 65.627 74.029 74.810
Nguyen-Van et al. (MISQ20) [40] 24.766 39.441 43.817 57.907 57.945 66.297 - -
Liew et al. (MLSDQ, Nc = 3) [33] 24.752 39.181 43.607 56.759 56.967 65.571 73.525 74.208
Liew et al. (MLSDQ, Nc = 4) [33] 24.744 - - - - - - -
Liew et al. (MLSDQ, Nc = 5) [33] 24.734 - - - - - - -
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Table 10: Clamped four-ply [βo/ − βo/ − βo/βo] circular laminated plate: effect of thickness-to-diameter ratio on nondimen-
sionalised natural frequencies for various mode numbers, ω̄ =

(
ωb2/h

)√
ρ/E2, E1/E2 = 40, using a grid of 15× 15.

Mode sequence number
β t/b 1 2 3 4 5 6 7 8
0o 0.001 45.245 56.510 72.646 93.440 118.647 119.399 134.972 146.804

0.050 33.401 42.190 55.649 70.957 73.602 80.909 94.742 95.602
0.100 22.198 29.646 40.921 42.759 50.526 54.876 61.312 65.787
0.150 16.424 23.040 30.528 32.359 37.045 43.081 45.728 45.907
0.200 13.111 18.923 23.801 26.641 29.339 35.109 35.246 36.465

45o 0.001 46.435 70.615 110.019 115.873 143.115 163.166 184.000 218.970
0.050 35.506 55.366 70.743 84.208 89.932 112.326 117.096 117.614
0.100 24.737 39.099 43.630 57.138 57.185 65.630 74.035 74.823
0.150 18.580 29.222 31.328 41.286 41.855 46.084 53.062 53.211
0.200 14.754 23.093 24.359 32.151 32.686 35.454 41.023 41.079
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Table 11: Simply supported square isotropic plate: Comparison of nondi-
mensionalised natural frequencies among 1D-IRBF, Strand7 and exact results,
ω̄ =

(
ωb2/h

)√
ρ/E2, t/b = 0.1, Ks = 5/6.

Mode IRBF (15 × 15) Strand7 (21 × 21) Exact [1]
1 5.769 5.809 5.769
2 13.765 13.970 13.764
3 21.122 21.569 21.121
4 25.780 26.278 25.734
5 32.319 33.129 32.284

Table 12: Simply supported square isotropic plate with a square hole: Compari-
son of nondimensionalised natural frequencies between 1D-IRBF and Strand7 results,
ω̄ =

(
ωb2/h

)√
ρ/E2, t/b = 0.1, Ks = 5/6.

Mode IRBF (17 × 17) Strand7 (41 × 41)
1 38.931 38.856
2 39.959 39.805
3 42.503 41.805
4 42.886 44.142
5 46.890 47.964
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Figure 1: Cartesian grid.
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Figure 2: Simply supported four-ply [0o/90o/90o/0o] square laminated plate: errors of
nondimensionalised fundamental frequency (ǫ = (ω̄ − ω̄E)/ω̄E) with respect to thickness-
to-length ratios t/b.
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Figure 3: Mode shapes for simply supported three-ply [0o/90o/0o] square laminated plate
with t/b = 0.2 and grid of 15 × 15.
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Figure 4: Mode shapes for simply supported three-ply [0o/90o/0o] rectangular laminated
plate with a/b = 2 , t/b = 0.2 and grid of 15 × 15.
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nondimensionalised fundamental frequency (ǫ = (ω̄ − ω̄E)/ω̄E) with respect to modulus
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Figure 8: Mode shapes for simply supported four-ply [45o/ − 45o/ − 45o/45o] circular
laminated plate, t/b = 0.1, grid of 19 × 19.

Mode 1: ω = 38.931

0 0.5 1
0

0.2

0.4

0.6

0.8

1
Mode 2: ω = 39.959

0 0.5 1
0

0.2

0.4

0.6

0.8

1

Mode 3: ω = 42.503

0 0.5 1
0

0.2

0.4

0.6

0.8

1
Mode 4: ω = 42.886

0 0.5 1
0

0.2

0.4

0.6

0.8

1

Figure 9: Mode shapes of simply supported square isotropic plate with a square hole,
t/b = 0.1, grid of 17 × 17.
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