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Abstract 

In this study, the resonance-frequency dependence and modal sensitivity of the flexural 

vibration modes of overhang/T-shaped microcantilevers to the interaction force and surface 

stiffness variations were analysed, and a closed-form expression was derived. The Euler–

Bernoulli beam theory was used to develop the overhang/T-shaped models, and a characteristic 

formula representing the dependence of cantilever frequencies on the overhang dimensions was 

obtained. The results of the derived expression were analysed using numerical simulations to 

investigate and compare the effects of the overhang width, length, repulsive and attractive 

forces, and surface contact stiffness on the flexural mode of overhang/T-shaped cantilevers. 

Furthermore, a closed-form expression for the modal sensitivities of the width-varying 

cantilever was derived, and the modal sensitivities were compared using numerical simulations. 

Finally, the effects of the interaction forces and contact stiffness on the frequency response and 

sensitivities of different cantilevers based on their stiffness and geometrical parameters were 

verified experimentally. This study can open new paths for designing, fabricating, and using 

width-varying cantilevers in sensing and imaging applications, particularly for cantilever array 

systems. 

Introduction 

Microcantilevers have been widely used in various technologies, such as actuators in micro-

electromechanical systems, sensors, energy harvesters, lab-on-chip technology, and atomic 

force microscopy (AFM) [1]–[4]. They are used in chemical and biosensing devices to improve 
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their versatility and detection speed in gas-phase and liquid environments [5]–[9]. In cantilever 

array sensors, each cantilever is coated with a sensitive layer that can be highly or partially 

specific to generate response patterns for the molecular recognition of various analytes [8]. In 

AFM, microcantilevers are utilised to detect minute forces between a sharp probe, typically 

protruding from the end of a cantilever and the surface of the sample [10]. Recently, 

functionalized cantilever-probe systems have been used to measure and quantify the physical, 

chemical, electrical, magnetic, and mechanical properties of an extensive range of materials, 

from biological objects to composites, polymers, nanoparticles, and even single molecules and 

atoms [11]–[17]. Platforms of array cantilevers have been developed to overcome the current 

limitations of AFM to simultaneously determine the multiparametric properties of the surface 

under study via a single measurement. This can achieve high-resolution multiparametric 

mapping of the physiochemical properties of the materials [18]–[20].  

In array systems, cantilevers are independently actuated or dependently coupled via 

electrical [21], mechanical [22], or both [23] channels. In exciting and controlling the vibration 

and response of cantilevers in an array system, the coupling between cantilevers is a crucial 

factor. Mechanically, the coupling can be achieved by adding a net [24] or full bridge between 

subsequent cantilevers [22], [25], [26]. This incorporation should be considered during the 

design and fabrication of single cantilevers used in parallel sensing to tune their properties and 

dimensions.  

In array systems, the overhang that couples subsequent cantilevers can significantly 

affect the frequency response, particularly for short cantilevers [27], [28]. Hence, an 

examination of the effect of the overhang on the frequency response of cantilevers is required. 

Significant efforts have been made to investigate width-varying cantilevers, including T-

shaped, overhang-shaped, and trapezoid-shaped cantilevers [27]–[32]. Assuming an analytical 

function for varying widths, Singh et al. [33] derived an equation for calculating the frequency 

response of width-varying cantilevers. However, the proposed equation is lengthy and 

complex. Furthermore, there is a lack of a general characteristic equation for the frequency 

response, and the frequency calculations are based on approximations or numerical results 

obtained through finite element simulations. In such approximations, the mode shape is 

assumed to be in the ideal form (a rectangular cantilever), and Rayleigh’s energy method is 

adopted to obtain the resonance frequency [34]. Lan et al. [35], derived characteristic equations 

for the overhang-shaped cantilever when it vibrates freely without any interaction with samples 

surface while the results being the new equation and the mode shapes as arising from them. 



Based on the method proposed in [35], Tri Dat et al [36] developed a methodology to derive 

the frequency equation and semi-empirical mechanical coupling strength of microcantilevers 

in an array. However, in these works the cantilever is not in contact with the sample and 

oscillates freely. When the cantilever is interacted with the sample, the problem becomes 

complicated as the cantilever has another “effective” spring constant and additional parameters 

need to be considered.  

During AFM operations, the dynamic behaviour of the microcantilevers significantly 

influences the surface imaging process, affecting the sensitivity and resolution.  It is desirable 

to use the frequency of the most sensitive mode as an excitation frequency for the AFM 

cantilever to achieve a high image contrast and signal-to-noise ratio (SNR). Several studies 

have been conducted to analyse the modal sensitivity of AFM cantilevers to variations in 

surface stiffness in air and liquid environments [3], [37]–[43]. However, the relationship 

between the frequency response or sensitivity of overhang/T-shaped cantilevers with 

interaction forces and the effective contact stiffness has not been investigated in detail. In this 

study, we investigated the dynamic response of overhanging cantilevers to applied forces and 

the stiffness of the interaction, i.e. the flexural modal sensitivity. This sensitivity is the change 

of flexural frequency regarding to the flexural vibration, i.e., the vibration normal to the 

cantilever surface. Changing the interaction force between cantilever and surface of specimen 

and contact stiffness leads to the change of flexural frequency of cantilever which can be 

described by flexural modal sensitivity. The flexural modal sensitivity can be normalized by 

the case of cantilever frequency where there is not contact between cantilever and the surface.  

The flexural mode is also the most widely used mode in AFM measurements. We derived an 

analytical closed-form equation to determine the frequency of overhanging cantilevers and 

another equation to evaluate the sensitivity of overhanging cantilevers to the stiffness of the 

interaction. Using simulations and experiments, we verified the equations and analysed the 

frequency response of cantilevers interacting with attractive and repulsive forces for hard and 

soft materials. 

2. Frequency response and modal sensitivity of flexural vibration of overhanging 

cantilever 

The cantilever is represented as a rectangular beam of length 𝑙 and thickness 𝑡, as shown in 

Figure 1. The overhanging part, with the same thickness 𝑡, has length 𝑙0 and width 𝑤0, resulting 

in the total cantilever length, 𝐿 = 𝑙 + 𝑙0. 



In general, the cantilever involves a sharp tip at the furthest part to interact with the 

sample. However, this tip is usually fabricated as small as possible to avoid greatly modifying 

the dynamics of the cantilever. Furthermore, for practical use, the effects of the tip are usually 

not considered. In the analytical calculation and simulation, the mass and size of the tip could 

be included at the end part of the cantilever by using an effective mass, or just as a corrected 

infinitesimal quantity. In the current paper, we assume that the effect of the tip could be 

omitted, and the cantilever involves the in-plane part only. 

Especially, the T-shaped cantilever is usually used to exploit the torsional modes. 

Therefore, the length of the T part is minimized to ensure that the torsional mode of the main 

cantilever (excluding the T part) is maintained. Nevertheless, the torsion of the T part should 

be considered because its length is large (l0 ~1/3L, Kim et al. [44]). In the current paper, we 

aim at the change in the frequency of the cantilever due to the size of the T part firstly. The 

change of the torsional vibrations due to the T-part size could be examined elsewhere. We also 

changed the size of the T part in a wide range, l0 from ~0.0 to ~ 1.0 of the total length L. If 

l0<0.1L, we will have the T-shaped cantilever as that of Mullin et al. [30] or of Liu et al. [32]. 

For brevity, in the remainder of the text, we will refer to the above-described kind of cantilevers 

as width-varying cantilevers, and specifically to overhanging (T-shaped) in case the width at 

its base is larger (smaller) than at the end. 

The Euler–Bernoulli equation is used to model the cantilever and derive the dynamic 

expressions: 

 𝑚(𝑥)
𝜕2𝑉(𝑥)

𝜕𝑡2 = −
𝜕2

𝜕𝑥2 [𝐸𝐼(𝑥)
𝜕2𝑉(𝑥)

𝜕𝑥2 ]                                                                                                                (1) 

where 𝑉(𝑥, 𝑡) is the deflection at 𝑥 and time 𝑡, 𝑚(𝑥) is the mass per unit length, and 𝐸 and 

𝐼(𝑥) are the (elastic) Young’s modulus and the area moment of inertia of the cross-section, 

respectively. Using the separation of variables method, 𝑉(𝑥, 𝑡) = 𝑊(𝑥)𝐺(𝑡), we obtain the 

following expressions: 

1

𝐺(𝑡)

𝑑2𝐺(𝑡)

𝑑𝑡2
= −

1

𝑚(𝑥)𝑊(𝑥)

𝑑2

𝑑𝑥2
[𝐸𝐼(𝑥)

𝑑2𝑊(𝑥)

𝑑𝑥2
] 

⟺ {

𝑑2𝐺(𝑡)

𝑑𝑡2 + 𝜔2𝐺(𝑡) = 0

𝑑2

𝑑𝑥2 [𝐸𝐼(𝑥)
𝑑2𝑊(𝑥)

𝑑𝑥2 ] − 𝑚(𝑥)𝜔2𝑊(𝑥) = 0
.                                                                              (2) 



The first part of Eq. (2) implies a periodic oscillation with frequency 𝜔. When the cantilever 

has a rectangular shape (without an overhang) and exhibits uniform mechanical properties 

along its length, 𝐼(𝑥) is independent of x. 

Based on the above equations and mathematical calculations, the following 

characteristic equation is derived [See the Supplementary Information for further details]: 

𝐶(𝛽, 𝑘𝑓 , 𝑙, 𝑙0, 𝜅)=4 + 4𝜅2 + (1 + 6𝜅 + 𝜅2)𝑐𝑜𝑠β𝑐𝑜𝑠ℎβ + 4(−1 + 𝜅2)𝑐𝑜𝑠β𝜂𝑐𝑜𝑠ℎβ𝜂 − 4𝑐𝑜𝑠[β − 

β𝜂]𝑐𝑜𝑠ℎ[β − β𝜂] + 4𝜅2 𝑐𝑜𝑠[β − β𝜂]𝑐𝑜𝑠ℎ[β − β𝜂]+ (1 − 𝜅)2(2𝑐𝑜𝑠[β𝜂]𝑐𝑜𝑠[β − β𝜂]𝑐𝑜𝑠ℎ[β − 2β𝜂] 

+ 𝑐𝑜𝑠[β − 2β𝜂]𝑐𝑜𝑠ℎ[𝛽])+
(

1

2
+

𝑖

2
)𝜈

𝛽3 ((1 + 6𝜅 + 𝜅2) × (sin((1 + 𝑖)𝛽) − 𝑠𝑖𝑛ℎ((1 + 𝑖)𝛽)) +

(1 − 𝜅)2 × (𝑠𝑖𝑛 (𝛽((1 + 𝑖) − 2𝜂)) − 𝑠𝑖𝑛ℎ (𝛽((1 + 𝑖) − 2𝜂))) + (1 − 𝜅)2 ×

(𝑠𝑖𝑛 (𝛽((1 + 𝑖) − 2𝑖𝜂)) − 𝑠𝑖𝑛ℎ (𝛽((1 + 𝑖) − 2𝑖𝜂))) + 4(1 − 𝜅2) × (𝑠𝑖𝑛((1 + 𝑖)𝛽(−1 +

𝜂)) − 𝑠𝑖𝑛ℎ((1 + 𝑖)𝛽(−1 + 𝜂))) + (1 − 𝑖)(1 − 𝜅)2 × (𝑐𝑜𝑠ℎ(𝛽 − 2𝛽𝜂)𝑠𝑖𝑛(𝛽 − 2𝛽𝜂) −

𝑐𝑜𝑠(𝛽 − 2𝛽𝜂)𝑠𝑖𝑛ℎ(𝛽 − 2𝛽𝜂))),                                                                                           (3)                                            

where 𝜂 = 𝑙0/𝐿. The eigenvalues of the overhanging cantilever were obtained using the 

characteristic equation above. Therefore, the eigenvalues for the frequency are functions of 𝑙0 

and 𝜅, as 𝛽 = 𝛽(𝑙0, 𝜅). For the case without an overhang, 𝑙0 = 0. The frequency for the 

cantilever with overhangs is defined as follows. 

𝜔𝑖 = 𝛽𝑖
2√𝐸𝐼/𝑀                                                                                                                     (4) 

Note that 𝐼 and 𝑀 in Eq. (4) correspond to the cantilever body {𝑙, 𝑤} as 𝐼/𝑀 = 𝐼0/𝑀0.  To 

calculate the sensitivity of the overhanging microcantilever to surface stiffness–force 

interaction, we used the equation 

𝜕𝜔𝑛

𝜕𝑣
=

𝜕𝜔𝑛

𝜕𝛽

𝜕𝛽

𝜕𝜈
  .                                                                                                                       (5) 

𝜕𝜔𝑛

𝜕𝛽
 can be calculated as follows. 

𝜕𝜔𝑛

𝜕𝛽
= 2𝛽𝑛√

𝐸𝐼

𝑀
  .                                                                                                                       (6) 

From Eq. (3), we obtain the following equations: 

𝜕𝛽

𝜕𝜈
= −

𝜕𝐶/𝜕𝜈

𝜕𝐶/𝜕𝛽
 ,                                                                                                                         (7) 



𝜕𝐶

𝜕𝜈
=

(
1

2
+

𝑖

2
)

𝛽3
((1 + 6𝜅 + 𝜅2) × (sin((1 + 𝑖)𝛽) − 𝑠𝑖𝑛ℎ((1 + 𝑖)𝛽)) + (1 − 𝜅)2 ×

(𝑠𝑖𝑛 (𝛽((1 + 𝑖) − 2𝜂)) − 𝑠𝑖𝑛ℎ (𝛽((1 + 𝑖) − 2𝜂))) + (1 − 𝜅)2 × (𝑠𝑖𝑛 (𝛽((1 + 𝑖) −

2𝑖𝜂)) − 𝑠𝑖𝑛ℎ (𝛽((1 + 𝑖) − 2𝑖𝜂))) + 4(1 − 𝜅2) × (𝑠𝑖𝑛((1 + 𝑖)𝛽(−1 + 𝜂)) −

𝑠𝑖𝑛ℎ((1 + 𝑖)𝛽(−1 + 𝜂))) + (1 − 𝑖)(1 − 𝜅)2 × (𝑐𝑜𝑠ℎ(𝛽 − 2𝛽𝜂)𝑠𝑖𝑛(𝛽 − 2𝛽𝜂) −

𝑐𝑜𝑠(𝛽 − 2𝛽𝜂)𝑠𝑖𝑛ℎ(𝛽 − 2𝛽𝜂))) ,                                                                                    (8) 

𝜕𝐶

𝜕𝛽
= (1 + 6𝜅 + 𝜅2)(𝑐𝑜𝑠𝛽𝑠𝑖𝑛ℎ𝛽 − 𝑠𝑖𝑛𝛽𝑐𝑜𝑠ℎ𝛽) + 4𝜂(𝜅2 − 1)(𝑠𝑖𝑛ℎ𝛽𝜂𝑐𝑜𝑠𝛽𝛽𝜂 −

𝑠𝑖𝑛𝛽𝜂𝑐𝑜𝑠ℎ𝛽𝜂) + 4(𝜅2 − 1)(1 − 𝜂)(𝑐𝑜𝑠(𝛽 − 𝛽𝜂)𝑠𝑖𝑛ℎ(𝛽 − 𝛽𝜂) − 𝑠𝑖𝑛(𝛽 − 𝛽𝜂)𝑐𝑜𝑠ℎ(𝛽 −

𝛽𝜂)) + (1 − 𝜅)2(−2𝜂𝑠𝑖𝑛(𝛽𝜂)𝑐𝑜𝑠(𝛽 − 𝛽𝜂)𝑐𝑜𝑠ℎ(𝛽 − 𝛽𝜂) − 2(1 − 𝜂)𝑐𝑜𝑠(𝛽𝜂)𝑠𝑖𝑛(𝛽 −

𝛽𝜂)𝑐𝑜𝑠ℎ(𝛽 − 2𝛽𝜂) + 2(1 − 2𝜂)𝑐𝑜𝑠(𝛽𝜂)𝑐𝑜𝑠(𝛽 − 𝛽𝜂)𝑠𝑖𝑛ℎ(𝛽 − 2𝛽𝜂) + 𝑐𝑜𝑠(𝛽 −

2𝛽𝜂)𝑠𝑖𝑛ℎ𝛽 − (1 − 2𝜂)𝑠𝑖𝑛(𝛽 − 2𝛽𝜂)𝑐𝑜𝑠ℎ𝛽) −
3(

1

2
+

𝑖

2
)𝜈

𝛽4 ((1 + 6𝜅 + 𝜅2) × (sin((1 + 𝑖)𝛽) −

𝑠𝑖𝑛ℎ((1 + 𝑖)𝛽)) + (1 − 𝜅)2 × (𝑠𝑖𝑛 (𝛽((1 + 𝑖) − 2𝜂)) − 𝑠𝑖𝑛ℎ (𝛽((1 + 𝑖) − 2𝜂))) +

(1 − 𝜅)2 × (𝑠𝑖𝑛 (𝛽((1 + 𝑖) − 2𝑖𝜂)) − 𝑠𝑖𝑛ℎ (𝛽((1 + 𝑖) − 2𝑖𝜂))) + 4(1 − 𝜅2) ×

(𝑠𝑖𝑛((1 + 𝑖)𝛽(−1 + 𝜂)) − 𝑠𝑖𝑛ℎ((1 + 𝑖)𝛽(−1 + 𝜂))) + (1 − 𝑖)(1 − 𝜅)2 ×

(𝑐𝑜𝑠ℎ(𝛽 − 2𝛽𝜂)𝑠𝑖𝑛(𝛽 − 2𝛽𝜂) − 𝑐𝑜𝑠(𝛽 − 2𝛽𝜂)𝑠𝑖𝑛ℎ(𝛽 − 2𝛽𝜂𝜂))) +
(

1

2
+

𝑖

2
)𝜈

𝛽3 ((1 + 6𝜅 +

𝜅2) × ((1 + 𝑖)(cos (𝛽(1 + 𝑖)) − cosh (𝛽(1 + 𝑖)) + (1 − 𝜅)2 × (((1 + 𝑖) −

2𝜂) (cos (𝛽((1 + 𝑖) − 2𝜂) − cosh (𝛽((1 + 𝑖) − 2𝜂))) + (1 − 𝜅)2 × ((1 + 𝑖) −

2𝑖𝜂) (cos (𝛽((1 + 𝑖) − 2𝑖𝜂) − cosh(𝛽((1 + 𝑖) − 2𝑖𝜂)) + 4(1 − 𝜅2) × (1 + 𝑖)(−1 +

𝜂)(cos (𝛽(1 + 𝑖)(−1 + 𝜂)) − cosh(𝛽(1 + 𝑖)(−1 + 𝜂)) + (1 − 𝑖) × (1 − 𝜅)2 ×

((1 − 2𝜂)𝑠𝑖𝑛ℎ(𝛽 − 2𝛽𝜂)𝑠𝑖𝑛(𝛽 − 2𝛽𝜂) + (1 − 2𝜂)𝑐𝑜𝑠ℎ(𝛽 − 2𝛽𝜂)𝑐𝑜𝑠(𝛽 − 2𝛽𝜂) +

(1 − 2𝜂)𝑠𝑖𝑛(𝛽 − 2𝛽𝜂)𝑠𝑖𝑛ℎ(𝛽 − 2𝛽𝜂) − (1 − 2𝜂)𝑐𝑜𝑠(𝛽 − 2𝛽𝜂)𝑐𝑜𝑠ℎ(𝛽 − 2𝛽𝜂))) .         

                                                                             (9) 

Substituting Eqs. (8) and (9) into Eq. (7) yields  
𝜕𝛽

𝜕𝜈
. 



3. Materials and Methods 

In this section, simulation and experimental results are presented and discussed. For the 

simulations, we selected the following parameters: L = 200 µm, w = 20 µm, t = 0.8 µm, E = 

250 GPa, and ρ = m/L = 3100 kg/m3 while η = l0/L, κ = w/w0 and ν (interaction force) have 

been varied to predict the behaviour of the resonance frequency modes (normalized to ω/ω0 

where ω0 is free resonance frequency) and sensitivity in relation to these physical variables. 

Note that all the simulation results for the frequency analysis are based on normalized 

frequencies. 

Two samples of materials with significantly different Young’s moduli were employed 

to experimentally validate the simulation results: polystyrene (PS, Agar Scientific, E ≈ 4.5 

GPa) and silicone elastomer (SE, Goodfellow, E ≈ 50 MPa). The experiments were performed 

in air using a commercial AFM system (D3100 Nasoscope III Digital Instruments, now Bruker) 

in amplitude-modulation AFM (AM-AFM, tapping mode) with overhanging silicon probes for 

tapping mode SCOUT70 (spring constant = 2 Nm-1, resonance frequency = 70 kHz, and radius 

of curvature < 10 nm) and SCOUT350 (42 Nm-1, 350 kHz, <10 nm) (Nu Nano Ltd.). 

The microcantilevers were imaged by Scanning Electron Microscopy (SEM – SU5000 

Hitachi) in low pressure environment (50 Pa) with a 30 kV acceleration voltage, by use of the 

Backscattered Electron detector. 

For each cantilever and sample, two separate sets of experiments were performed in the 

AM-AFM mode by tuning the first and second resonance frequencies with a target root-mean-

square amplitude of 1 V. After engaging, frequency sweeps were performed to record the 

variation in the resonance frequency and shape of the resonance peak at set lift heights from 

100 nm (minimal tip–sample interaction) to negative values until the resonance peak 

disappeared (the tip adhering to the surface of the sample). The lift height was relative to the 

average tip-sample distance in the AM-AFM mode at the established setpoint. 

4. Results and discussion 

4.1 Analytical results 

The frequency response of different eigenfrequencies of microcantilever with different 

overhang width and length has been seen to be significantly dependent on either attractive or 

repulsive interaction forces. The higher the mode order, the stronger the dependence is seen. 

The effect of repulsive force on overhanging cantilevers (κ<1) is more significant than T-

shaped ones (κ>1). However, there is a direct relation between increase of repulsive force and 



frequency of all modes. From the results it can be summarized that the effect of interaction 

force on overhanging cantilever and lower modes is higher than on T-shaped cantilever and 

higher modes. [See the Supplementary Information for more details]. 

To investigate the effect of the overhang length and width under the same repulsive 

force, we set two different lengths and varied the width of the overhanging part. As shown in 

Figure 2a and b, an increase in 𝜂 decreases the frequency. For the same 𝜂, an increase in 𝜅 

increases the frequency of the first three eigenmodes, whereas the fourth eigenmode exhibits 

nonlinear behaviour, indicating a nonlinear relationship between frequency, 𝜂, and 𝜅. 

Similarly, the variation in frequency with interaction force for a set 𝜂 on overhang (𝜅 =

0.5) and T-shaped (𝜅 = 1.5) cantilevers was analysed (Figure 2c and d). A nonlinear 

relationship between the frequencies and forces for both cantilevers is evident. For the 

overhanging cantilever, frequency peaks appear at different applied force values for different 

modes, and the frequency shift for the lower eigenmodes is higher than that for higher 

eigenmodes. The frequency response of T-shaped cantilevers is the inverse of that of the 

overhang cantilevers. An increase in the force decreased the frequency until the trough point 

was reached, after which the frequency increased again. However, the frequency sensitivity of 

the T-shaped cantilevers follows the same trend as that of the overhang cantilevers, with a more 

significant change for the lower modes. 

The effect of 𝜂 for the T-shaped and overhang cantilevers with free vibration (𝜈 = 0) 

and repulsive force (𝜈 > 0) is shown by the simulation results in Figure 3. In the case of free 

vibration, the frequency response is symmetric for all modes. Nonlinear behaviour of the modes 

with respect to each other is observed, indicating that for a 𝜂 value of approximately 0.5, the 

frequency of the third mode is higher than that of the fourth mode. Furthermore, for the length 

of the overhang equal to the main body length of the cantilever (η = 0.5), the first resonance 

frequency of the overhanging beam is at its lowest value, whereas the third eigenfrequency is 

at its highest frequency (Figure 3a). Under a repulsive force (Figure 3b), the frequency response 

is entirely nonlinear, with the highest frequencies occurring at 𝜂 = 1. For a freely vibrating T-

shaped cantilever, the frequency response is also symmetric; however, at η = 0.5, the highest 

frequency value occurs only in the first mode. In the case of the repulsive force (𝜈 = 100) 

(Figure 3d), the frequency response of all modes is nonlinear, with varying 𝜂 under the lowest 

frequency for each eigenmode at 𝜂 = 1.  



Several simulations were performed to study the sensitivity of width-varying T-shaped 

cantilevers to surface stiffness. The width ratio was set to 𝜅 = 1.5 to study the effect of the 

overhang length on the modal sensitivity of the cantilever, and the sensitivity with varying 

stiffness was calculated for different values of 𝜂, (Figure 4).  

A nonlinear relationship between the stiffness, 𝜂, and sensitivity is evident. In the first mode, 

an increase in 𝜂 decreased the sensitivity, whereas, in higher modes, the behaviour is different. 

In the second mode, the most sensitive case was associated with 𝜂 = 0.6, with 𝜂 = 1 yielding 

the lowest sensitivity. In the third and fourth modes, 𝜂 = 0.8 resulted in the highest sensitivity, 

but the order of modes for other length ratios was not the same. However, the general trend of 

rectangular cantilevers can be observed for decreased sensitivity with respect to stiffness, with 

the first mode being the most sensitive for soft surfaces and higher modes more sensitive to 

stiffer surfaces.  

A similar analysis was performed for overhanging cantilevers (Figure 5). In this case, 

the sensitivity of the first mode was inversely proportional to that of the T-shaped cantilevers. 

The highest sensitivity occurred at 𝜂 = 1, and a decrease in 𝜂 resulted in decreased sensitivity. 

In higher modes, the behaviour is more complex, with the highest sensitivity at 𝜂 = 1 for soft 

materials (in other words, for low repulsive force), similar as for the first mode. Under high 

repulsive force, 𝜂 = 1 yields the lowest sensitivity. 

Finally, the simulation results for the effect of the cantilever width are presented in Figure 6. 

All the modes exhibited similar behaviour, and a linear relationship between 𝜅 and sensitivity 

was observed. The results show that increasing the width leads to decreased sensitivity. 

Moreover, by increasing the surface stiffness, the higher modes would be more sensitive than 

the lower modes. 

4.2. Experimental results 

To analyse and compare the frequency responses of cantilevers to the interaction force and 

contact stiffness for soft and hard materials, we considered two different cantilevers (stiff and 

soft) and two different samples: SE as the soft material (E ≈ 10 MPa) and PS as the hard 

material (E ≈ 3 GPa). Cantilever’s dimensions were measured by SEM (Figure 7), yielding 

equal width factor 𝜅 = 0.141 and length factor 𝜂 = 0.262, 𝜂 = 0.365 for the Scout70 

(Figure7a) and Scout350 (Figure7b) cantilever, respectively.  

We should mention the changes in frequencies and sensitivities when changing κ and η (=l0/L) 

of different types of cantilevers come directly from the change of parameters. As a result, the 



model and analytical results are consistent and thorough with κ and η. The T-shaped differ to 

the overhang-shaped cantilevers just in the values of κ. So, the experimental results for the T-

shaped cantilevers, could be inferred from the ones for overhang-shaped cantilevers. So, in this 

work, for the experiments we just focus on overhang-shaped cantilevers as they are 

commercially more available in market.  

Figure 8 shows the frequency response of the first mode with cantilever approaching the 

sample’s surface at different lift heights. Given that the lift height changes the average tip-

surface distance during AM-AFM, a positive (negative) lift height results in reduced 

(increased) effective contact stiffness as described in [43].  As the results show, approaching 

the cantilever towards the surface of the sample leads to changes in curves’ amplitude. For both 

cantilevers the effect on the amplitude of the frequency curve is more significant on PS than 

on elastomer.  

The second eigenfrequency response of the cantilevers are depicted in Figure 9. 

Sensitivity and frequency shifts of both cantilevers are higher on polystyrene than on elastomer, 

and the effect of soft surface on the second mode is less significant than on the first mode, as 

predicted by our analytical model and simulations.  

Finally, we simulated the overhang-shape cantilever with the parameters of SCOUT70 

cantilever in interaction with ES and PS.  Figure 10, displaying 𝜔/𝜔0 vs calculated normalised 

contact stiffness 𝜈 for results from soft cantilever on both materials, show agreement with 

simulation results (with width and length factors closer to the cantilever’s ones). Due to the 

low Young’s modulus of the soft material (Figure 10a), the resulting stiffness range for varying 

surface distance lies at very low values, with corresponding 𝜔/𝜔0 showing little variations, 

matching the trend predicted by simulations for low 𝜈 for the first mode. The behaviour of first 

eigenfrequency for the hard material shows a plateau and a decline, similar to the one predicted 

by simulations for the first mode in the same range of 𝜈 (Figure 10b). 

Furthermore, for the second eigenfrequency, 𝜔/𝜔0 vs calculated normalised contact 

stiffness 𝜈 for results from soft cantilever (Figures 10c and d), show again agreement with the 

trends shown by simulations, with flat profile for soft material (low 𝜈) and ascending slope for 

hard material (𝜈 > 20). 

5. Conclusion 

In this study, the Euler–Bernoulli beam theory was used to model and analyse the frequency 

response and modal sensitivities of overhanging/T-shaped cantilevers. Closed-form 



expressions were derived for the resonance frequencies of width-varying microcantilevers. An 

analytical equation for the flexural sensitivity of such cantilevers to variations in the specimen 

surface stiffness and interaction forces is proposed. For lower values of normal stiffness, the 

first mode is the most sensitive; however, as the stiffness increases, higher modes become more 

sensitive.  

The results show a nonlinear relationship between the overhang width, length, 

interaction forces, and surface contact stiffness. Using experiments on two cantilevers and two 

samples with different stiffness values, we analysed the effects of the interaction force and 

sample stiffness on the microcantilevers based on AFM. The experimental data either 

qualitatively or quantitatively validated the proposed method and simulation results. Our 

results enable a predictive design in fabricating overhang microcantilevers for applications in 

sensing and imaging mechanisms. Moreover, our experiments and simulations can help AFM 

users select appropriate cantilevers and excitation mechanisms to obtain higher SNRs and 

resolutions, depending on the sample under study. Finally, our developed methodology can be 

extended to study the behaviour of overhanging cantilevers in liquid environment by 

considering the effect of hydrodynamic function in liquid environment. 
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Figure 1. Models of microcantilevers: a cantilever with an overhanging part of length 𝑙0 and 

width 𝑤0. The length and width of the main body of the cantilever are 𝑙 and 𝑤, respectively. 

We define 𝜂 = 𝑙0/(𝑙0 + 𝑙) and 𝜅 = 𝑤/𝑤0. For  𝑤0 < 𝑤, a T-shaped cantilever is defined. 

 

 

 

 

 

 

 

 

 

 

 

 



 

Figure 2. Frequency response of a) T-shaped cantilever with 𝜂 = 0.2 and b) 𝜂 = 0.5 and 

same contact stiffness to varying overhang width. c) Frequency response of overhanging 

cantilever with 𝜂 = 0.2 to varying repulsive force and contact stiffness. d) Frequency 

response of T-shaped cantilever with η = 0.2 to varying repulsive force and contact stiffness. 

 

 

 

 



 

Figure 3. Frequency response of a) freely vibrated overhanging cantilever with 𝜅 = 0.5 and 

b) overhanging cantilever with 𝜅 = 0.5 and 𝜈 = 100 (repulsive force) to variation in 

overhang length. Frequency response of c) freely vibrated T-shaped cantilever with 𝜅 = 1.5, 

and d) T-shaped cantilever with 𝜅 = 1.5 and 𝜈 = 100 (repulsive force) to variation in 

overhang length. 

 

 

 



 

Figure 4. Flexural modal sensitivity of T-shaped cantilever (𝜅 = 1.5) as function of normal 

contact stiffness and overhanging length for a) first mode, b) second mode, c) third mode, and 

d) fourth mode. 

 

 

 

 

 

 



 

Figure 5. Flexural modal sensitivity of overhanging cantilever (𝜅 = 0.5) as function of 

normal contact stiffness and overhanging length for a) first mode, b) second mode, c) third 

mode, and d) fourth mode. 

 

 

 

 

 

 



 

Figure 6. Flexural modal sensitivity of width-varying cantilevers with 𝜂 = 1 as function of 

normal contact stiffness and overhanging width for a) first mode, b) second mode, c) third 

mode, and d) fourth mode. 

 

 

 

 

 

 



 

Figure 7. Representative scanning electron microscopy images of a) SCOUT70 and b) 

SCOUT350 cantilevers. The cantilevers are shown at 400× magnification. The 

manufacturer’s specifications for the length, width, and thickness are 225, 30, and 2.5 μm for 

SCOUT70, and 125, 30, and 4.5 μm for SCOUT350, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Figure 8. First-mode frequency response of a) SCOUT70 cantilever vs SE, b) SCOUT70 

cantilever vs PS, c) SCOUT350 cantilever vs SE and d) SCOUT350 cantilever vs PS.  

 

 

 

 

 

 

 

 

 

 

 

 



 

Figure 9. Second-mode frequency response of a) SCOUT70 cantilever vs SE, b) SCOUT70 

cantilever vs PS, c) SCOUT 350 cantilever vs SE, and d) SCOUT350 cantilever vs PS.  

 

 

 

 



 

Figure 10. Comparison between simulation and experimental results for a) first-mode 

frequency response of SCOUT70 cantilever vs SE, b) first-mode frequency response of 

SCOUT70 cantilever vs PS, c) Second-mode frequency response of SCOUT70 cantilever vs 

SE, d) Second-mode frequency response of SCOUT70 cantilever vs PS. 

 


