91 research outputs found

    Where are the paediatricians? An international survey to understand the global paediatric workforce

    Get PDF
    Objective: Our primary objective was to examine the global paediatric workforce and to better understand geographic differences in the number of paediatricians globally. Secondary objectives were to describe paediatric workforce expectations, who provides children with preventative care and when children transition out of paediatric care. Design: Survey of identified paediatric leaders in each country. Setting: Paediatric association leaders worldwide. Main outcome measures: Paediatrician numbers, provision of primary care for children, age of transition to adult care. Results: Responses were obtained from 121 countries (73% of countries approached). The number of paediatricians per 100 000 children ranged from a median of 0.5 (IQR 0.3–1.4) in low-income countries to 72 (IQR 4–118) in high-income countries. Africa and South-East Asia reported the lowest paediatrician density (median of 0.8 paediatricians per 100 000 children, IQR 0.4–2.6 and median of 4, IQR 3–9, respectively) and fewest paediatricians entering the workforce. 82% of countries reported transition to adult care by age 18% and 39% by age 15. Most countries (91%) but only 64% of low-income countries reported provision of paediatric preventative care (p\u3c0.001, Cochran-Armitage trend test). Systems of primary care provision varied widely. A majority of countries (63%) anticipated increases in their paediatric workforce in the next decade. Conclusions: Paediatrician density mirrors known inequities in health provider distribution. Fewer paediatricians are entering the workforce in areas with already low paediatrician density, which may exacerbate disparities in child health outcomes. In some regions, children transition to adult care during adolescence, with implications for healthcare training and delivery. Paediatrician roles are heterogeneous worldwide, and country-specific strategies should be used to address inequity in child health provisio

    Evaluation of mycotoxin content in soybean (Glycine max l.) grown in Rwanda

    Get PDF
    Soybean is a critical food and nutritional security crop in Rwanda. Promoted by the Rwandan National Agricultural Research System for both adults and as an infant weaning food, soybean is grown by approximately 40% of households. Soybean may be susceptible to the growth of mycotoxin-producing moulds; however, data has been contradictory. Mycotoxin contamination is a food and feed safety issue for grains and other field crops. This study aimed to determine the extent of mycotoxin contamination in soybean, and to assess people’s awareness on mycotoxins. A farm-level survey was conducted in 2015 within three agro-ecological zones of Rwanda suitable for soybean production. Soybean samples were collected from farmers (n=300) who also completed questionnaires about pre-and post-harvest farm practices, and aflatoxin awareness. The concentration of total aflatoxin in individual soybean samples was tested by enzymelinked immunosorbent assay (ELISA) using a commercially-available kit. Other mycotoxins were analyzed using liquid chromatography-mass spectrometry (LCMS/ MS) on 10 selected sub samples. Only 7.3% of the respondents were aware of aflatoxin contamination in foods, but farmers observed good postharvest practices including harvesting the crop when the pods were dry. Using enzyme-linked immunosorbent assay (ELISA), only one sample had a concentration (11 μg/kg) above the most stringent EU maximum permitted limit of 4 μg/kg. Multi-mycotoxins liquid chromatography-mass spectrometry (LC-MS/MS) results confirmed that soybeans had low or undetectable contamination; only one sample contained 13μg/kg of sterigmatocystine. The soybean samples from Rwanda obtained acceptably low mycotoxin levels. Taken together with other studies that showed that soybean is less contaminated by mycotoxins, these results demonstrate that soybean can be promoted as a nutritious and safe food. However, there is a general need for educating farmers on mycotoxin contamination in food and feed to ensure better standards are adhered to safeguard the health of the consumers regarding these fungal secondary metabolites.Key words: soybean, safety, mould, aflatoxin, mycotoxins, sterigmatocystine, ELISA, LC-MS/MS, Rwand

    DNA double-strand breaks induce H2Ax phosphorylation domains in a contact-dependent manner

    Get PDF
    Formation of γH2Ax serves as a checkpoint for double-strand break (DSB) repair pathways. Here the authors reveal via integrated chromatin analysis that γH2Ax domains are established by chromosomal contacts with the DSB site

    Volcanic-aerosol-induced changes in stratospheric ozone following the eruption of Mount Pinatubo

    Get PDF
    Measurements of lower stratospheric ozone in the Tropics using electrochemical concentrations cell (ECC) sondes and the airborne UV Differential Absorption Lidar (DIAL) system after the eruption of Mt. Pinatubo are compared with the Stratospheric Aerosol and Gas Experiment 2 (SAGE 2) and ECC sonde measurements from below the eruption to determine what changes have occurred as a result. Aerosol data from the Advanced Very High Resolution Radiometer (AVHRR) and the visible and IR wavelengths of the lidar system are used to examine the relationship between aerosols and ozone changes. Ozone decreases of 30 percent at altitudes between 19 and 26 km, partial column (16-28 km) decreases of about 27 D.U., and slight increases (5.4 D.U.) between 28 and 31 km are found in comparison with SAGE 2 climatological values

    2000 Wild Blueberry Project Reports

    Get PDF
    The 2000 edition of the Wild Blueberry Project Reports was prepared for the Maine Wild Blueberry Commission and the University of Maine Wild Blueberry Advisory Committee by researchers at the University of Maine, Orono. Projects in this report include: 1. Determination of Pesticide Residue Levels in Fresh and Processed Wild Blueberries 2. Factors Affecting the Microbiological Quality of IQF Blueberries 3. Effect of Processed Blueberry Products on Oxidation in Meat Based Food Systems 4. Separation of Maggot Infested Wild Blueberries in the IQF Processing Line 5. Water Use of Wild Blueberries 6. Control Tactics for Blueberry Pest Insects, 2000 7. IPM Strategies 8. Biology and Ecology of Blueberry Pest Insects 9. Survey of Stem Blight and Leaf Spot Diseases in Lowbush Blueberry Fields 10. Phosphorus/Nitrogen Fertilizer Ratio 11. Effect of Boron Application Methods on Boron Uptake in Lowbush Blueberries 12. Effect of Foliar Iron and Copper Application on Growth and Yield of Lowbush Blueberries 13. Effect of Soil pH on Nutrient Uptake 14. Effect of Nutri-Phite (tm) P+K on Growth and Yield of Lowbush Blueberry 15. Effect of Fertilizer Timing on Lowbush Blueberry Growth and Productivity 16. Assessment of Azafenidin for Weed Control in Wild Blueberries 17. Assessment of Rimsulfuron for Weed Control in Wild Blueberries 18. Assessment of Pendimethalin for Weed Control in Wild Blueberries 19. Assessment of VC1447 for Weed Control in Wild Blueberries 20. Cultural Management Using pH for Weed Control in Wild Blueberries 21. Evaluation of Sprout-Less Weeder® for Weed Control in Wild Blueberries 22. Evaluation of RoundUp Ultra® and Touchdown 5® for Weed Control in Wild Blueberries 23. Evaluation and Demonstration of Techniques for Filling in Bare Spots in Wild Blueberry Fields 24. Evaluation of Fungicides Efficacy in Wild Blueberry Fields 25. Velpar® and Sinbar/Karmex® Demonstration Plot Comparison Trial 26. Blueberry Extension Education Program in 2000 27. 2000 Hexazinone Groundwater Surve

    Genetic Control of Resistance to Trypanosoma brucei brucei Infection in Mice

    Get PDF
    Trypanosoma brucei are extracellular protozoa transmitted to mammalian host by the tsetse fly. They developed several mechanisms that subvert host's immune defenses. Therefore analysis of genes affecting host's resistance to infection can reveal critical aspects of host-parasite interactions. Trypanosoma brucei brucei infects many animal species including livestock, with particularly severe effects in horses and dogs. Mouse strains differ greatly in susceptibility to T. b. brucei. However, genes controlling susceptibility to this parasite have not been mapped. We analyzed the genetic control of survival after T. b. brucei infection using CcS/Dem recombinant congenic (RC) strains, each of which contains a different random set of 12.5% genes of their donor parental strain STS/A on the BALB/c genetic background. The RC strain CcS-11 is even more susceptible to parasites than BALB/c or STS/A. In F2 hybrids between BALB/c and CcS-11 we detected and mapped four loci, Tbbr1-4 (Trypanosoma brucei brucei response 1–4), that control survival after T. b. brucei infection. Tbbr1 (chromosome 3) and Tbbr2 (chromosome 12) have independent effects, Tbbr3 (chromosome 7) and Tbbr4 (chromosome 19) were detected by their mutual inter-genic interaction. Tbbr2 was precision mapped to a segment of 2.15 Mb that contains 26 genes

    High body mass index is not associated with atopy in schoolchildren living in rural and urban areas of Ghana

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Factors which determine the development of atopy and the observed rural-urban gradient in its prevalence are not fully understood. High body mass index (BMI) has been associated with asthma and potentially atopy in industrialized countries. In developing countries, the transition from rural to urban areas has been associated with lifestyle changes and an increased prevalence of high BMI; however, the effect of high BMI on atopy remains unknown in this population. We therefore investigated the association between high BMI and atopy among schoolchildren living in rural and urban areas of Ghana.</p> <p>Methods</p> <p>Data on skin prick testing, anthropometric, parasitological, demographic and lifestyle information for 1,482 schoolchildren aged 6-15 years was collected. Atopy was defined as sensitization to at least one tested allergen whilst the Centres for Disease Control and Prevention (CDC, Atlanta) growth reference charts were used in defining high BMI as BMI ≥ the 85<sup>th </sup>percentile. Logistic regression was performed to investigate the association between high BMI and atopy whilst adjusting for potential confounding factors.</p> <p>Results</p> <p>The following prevalences were observed for high BMI [Rural: 16%, Urban: 10.8%, p < 0.001] and atopy [Rural: 25.1%, Urban: 17.8%, p < 0.001]. High BMI was not associated with atopy; but an inverse association was observed between underweight and atopy [OR: 0.57, 95% CI: 0.33-0.99]. Significant associations were also observed with male sex [Rural: OR: 1.49, 95% CI: 1.06-2.08; Urban: OR: 1.90, 95% CI: 1.30-2.79], and in the urban site with older age [OR: 1.76, 95% CI: 1.00-3.07], family history of asthma [OR: 1.58, 95% CI: 1.01-2.47] and occupational status of parent [OR: 0.33, 95% CI: 0.12-0.93]; whilst co-infection with intestinal parasites [OR: 2.47, 95% CI: 1.01-6.04] was associated with atopy in the rural site. After multivariate adjustment, male sex, older age and family history of asthma remained significant.</p> <p>Conclusions</p> <p>In Ghanaian schoolchildren, high BMI was not associated with atopy. Further studies are warranted to clarify the relationship between body weight and atopy in children subjected to rapid life-style changes associated with urbanization of their environments.</p

    A Comprehensive Genetic Analysis of Candidate Genes Regulating Response to Trypanosoma congolense Infection in Mice

    Get PDF
    About one-third of cattle in sub-Saharan Africa are at risk of contracting “Nagana”—a disease caused by Trypanosoma parasites similar to those that cause human “Sleeping Sickness.” Laboratory mice can also be infected by trypanosomes, and different mouse breeds show varying levels of susceptibility to infection, similar to what is seen between different breeds of cattle. Survival time after infection is controlled by the underlying genetics of the mouse breed, and previous studies have localised three genomic regions that regulate this trait. These three “Quantitative Trait Loci” (QTL), which have been called Tir1, Tir2 and Tir3 (for Trypanosoma Infection Response 1–3) are well defined, but nevertheless still contain over one thousand genes, any number of which may be influencing survival. This study has aimed to identify the specific differences associated with genes that are controlling mouse survival after T. congolense infection. We have applied a series of analyses to existing datasets, and combined them with novel sequencing, and other genetic data to create short lists of genes that share polymorphisms across susceptible mouse breeds, including two promising “candidate genes”: Pram1 at Tir1 and Cd244 at Tir3. These genes can now be tested to confirm their effect on response to trypanosome infection
    corecore