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ABSTRACT

Measurements of lower stratospheric ozone in the

Tropics using electrochemical concentrations cell (ECC)
sondes and the airborne UV Differential Absorption

Lidar (DIAL) system after the eruption of Mt. Pinatubo
are compared with The Stratospheric Aerosol and Gas

Experiment II (SAGE II) and ECC sonde measurements
from before the eruption to determine what changes
have occurred as a result. Aerosol data from the

Advanced Very High Resolution Radiometer (AVHRR)

and the visible and IR wavelengths of the lidar system
are used to examine the relationship between aerosols

and ozone changes. Ozone decreases of 30% at alti-
tudes between 19 and 26 km, partial column (16-28 km)
decreases of about 27 D.U. and slight increases (5.4

D.U.) between 28 and 31 km are found in comparison
with SAGE II climatological values.

1. INTRODUCTION

Reductions of mid-latitude stratospheric ozone

were observed following the volcanic eruptions of Mt.
Agung on March 17, 1963 [Pittock, 1966; Grams and

Fiocco, 1967], Fuego in October 1974 [J_iger and Wege,

1990], El Chich6n on March 28 to April 4, 1982
[Adriani et al., 1987; Angell, 1988; Newell and Selkirk,

1988; J_iger and Wege, 1990], and low values of

tropical stratospheric ozone were observed following the
eruption of Mt. Pinatubo on June 15 and 16, 1991

[Waters et al., 1992; Grant et al., 1992; Schoeberl et

al., 1992]. Various theories have been developed to

explain the observed mid-latitude changes including: (1)
heterogeneous chemistry involving reactions of nitrogen
species with the sulfuric acid aerosols, freeing chlorine
to be more active in attacking ozone [Hofmann and

Solomon, 1989; Michelangeli et al., 1989]; (2) aerosol

effects on solar radiation including heating [Fiocco et

al., 1978; Adriani et al., 1987; Michelangeli et al.,

1989]; and (3) transport of perturbed tropical air masses

to mid-latitude regions without further changes in ozone

after arrival [e.g., Pittock, 1966; Dobson, 1973].
The eruption of Mt. Pinatubo, being the largest

of this century, placed 20 to 30 megatonnes of material

into the stratosphere [McCormick and Veiga, 1992], and
thus it provided a good opportunity to continue the study

of the effect of volcanic aerosols on stratospheric ozone.
To this end, historical data from SAGE II [McCormick

et al., 1989], and recent data obtained using ECC
sondes in the Tropics [Grant et al., 1992] and the UV

DIAL system [Browell, 1989; Browell et al., 1990a] are
used for the ozone change determinations. For aerosol

information, data obtained using the UV DIAL system
[Browell 1989; Browell et al., 1990b] and the AVHRR
instrument on NOAA/11 ]Stowe et al., 1992] are used.

2. INSTRUMENT DESCRIPTIONS

Three ozone data sets are employed for the
analysis of the effects of volcanic aerosols on tropical

ozone -- SAGE II data for the appropriate phase of the
quasi-biennial oscillation (QBO) from November 1984
to May 1991; ECC sonde data from Brazzaville, The

Congo (4°S, 15°E), from June 6, 1990, to Jan. 3, 1992,

and Ascension Island (8°S, 14°W) from July 28, 1990 to

Feb. 27, 1992; and UV DIAL data from several flights
during the Airborne Arctic Stratospheric Expedition

(AASE-II) on January 28 and 30 and February 20,
1992. For aerosols, zonally averaged AVHRR data are

used for determination of the aerosol optical depths
(A.O.D.), and lidar data using the visib!e and IR
wavelengths of the UV DIAL system are used for

vertical profiles of surface area Ioadings.

The SAGE I! data are used to provide climatolog-
ical values for ozone profiles before the eruption of Mr.
Pinatubo. Since SAGE II is a solar occultation instru-

ment, it is unable to measure ozone in regions with
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denseaerosolsthatoccur after volcanic eruptions, such

as in the tropics. Nevertheless, the data obtained with

it prior to the eruption are very useful for determining
ozone climatological values, standard deviations, and
QBO excursions which can be used for comparison with
measurements made by instruments that were not

making long-term measurements. By combining profiles

for each month of interest for the years with similar

phases of the QBO, deviations from recent historical
variations can be determined. This is especially impor-

tant near the tropics where the QBO plays an important
role in determining ozone values [Bojkov, 1987; Newell
and Selkirk, 1988]. For 1991, a year in which the

stratospheric winds above Singapore were changing to

easterly near the beginning of the year [Trepte and
Hitchman, 1992], the years 1986, 1988, and 1991 prior

to the eruption can be used for the climatology [Schoe-
berl et al., 1992]. Fnr 1992, values from 1987 and

1989 can be used, assuming that it is the second year of
the easterly phase.

The type of ECC sonde used was originally

developed by Komhyr [1969] and is manufactured by
Science Pump Corp., Camden, NJ. The sonde is

launched on a balloon which typically reaches altitudes
of 31 km before the balloon bursts. Air containing

ozone is pumped through a KI solution and causes the
release of electrons from the iodine, from which the

amount of ozone present can be determined. The ECC
sonde is assumed to be insensitive to the presence of
aerosols [Komhyr, NOAA, private communication],

although in the presence of high aerosol concentrations

this assumption may be wrong. The accuracy of the
ECC sonde can be 6% in the stratosphere (17 to 32 km)

and the precision 3 % [Komhyr et al., 19921.
The UV DIAL system uses a pair of Nd:YAG

lasers to pump dye lasers which are doubled to generate
the ultraviolet wavelengths required for the ozone
measurements [Browell, 1989]. For stratospheric

measurements, wavelengths of 301.5 and 310.85 nm are

employed, and the absorption coefficients of Molina and
Molina [1986] are used in the analysis. The residual

dye laser and Nd:YAG laser energies are used to
measure atmospheric backscatter in the visible (603 nm)

and near-IR (1.06 ttm) spectral regions in order to
determine aerosol distributions. The UV DIAL system
has been shown to make measurements of stratospheric

ozone with an accuracy of 10% [Broweii, 1989]. This

system has been used to study ozone depletion in the
1987 Airborne Antarctic Ozone Experiment (AAOE)

[Browell et al., 1988], the 1989 AASE mission [Broweli

et al., 1990a,b], and the 1992 AASE-II field expedition.
During the AASE-II mission, the NASA DC-8 was

typically flown at altitudes of 33 to 37 kft, and the UV

DIAL system was pointed only in the zenith.

When there is a strong aerosol gradient present in

the lidar signals, additional care is required when
processing the signals to determine the ozone profile.

In general, a Bernoulli solution to the lidar equation is
used to correct the DIAL calculation for the wavelength

dependence of the aerosol scatter and extinction [Brow-
ell et al., 1985]. Without the correction, the DIAL

calculation would show a derivative signal about a

strong aerosol gradient, going high before the layer and

low after the layer. The backscatter correction requires
a knowledge of both the normalized aerosol backscat-
tering phase function (Pa') and the aerosol backscatter

wavelength dependence (¢_) at the measurement wave-
lengths. The lidar signals in the IR, visible, and UV

regions are used to determine the wavelength depen-
dence of the aerosol backscatter. The value of ot used

was generally 0.7, while the value of Plr was set to
0.028 sr 1 [Fenn et al., 1992]. After the corrections

were applied, no obvious features associated with these
aerosol effects remained in the DIAL ozone profiles.

3. TROPICAL DATA

Since the ECC sonde is expected to provide the

measurement of ozone profiles without interference from
aerosols, we will examine the ECC sonde data first. A

preliminary discussion of the ECC sonde measurements
showing tropical ozone reductions as great as 20% and
column reductions of about 5-8% was presented by

Grant et al. [1992].
In this work, ECC sonde data are compared with

SAGE II climatology for individual months. While not
shown, before the eruption of Mt. Pinatubo, the sondes
for the first 5 months of 1991 gave mean ozone values

that agreed with SAGE II climatology within statistical
expectations. After the eruption of Mt. Pinatubo, there
were deviations of the sonde values from the SAGE II

values outside the 20 level for August, the first month
that sonde launches were made after the eruption (see

Figure 1a). The ozone decrease below about 28 km was
greatest for the month of October (approximately 27
D.U. or 10% of the total column) (Figure lb) and then

gradually decreased.
A more detailed look at the individual sonde

profiles indicates that the minimum in ozone at 23.5 km
occurred October 13+3 days. In addition, an enhance-

ment of ozone is apparent above about 28 km in all

cases, being at or above the 20 level for 5 of the 7
months, and at the la level for 2 months.

Let us turn now to the UV DIAL ozone data in

the Tropics. The tropical ozone was measured on three

separate flights during AASE II -- on January 28, 1991,

on a flight from NASA Ames at Moffett Field, Califor-
nia (38°N, 122°W) to Tahiti (18°S, 150°W); on January
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Figure 1. Monthly ECC sonde averages from Brazzaville and

Ascension Island for August 1991 (a) and October 1991 Co)

compared with SAGE II ozone climatology (1986, 1988).

30 on the return trip to NASA Ames from Tahiti; and

February 20-21 on a flight from Bangor, Maine (45°N,
69°W) over Puerto Rico to 15°N and back. Ozone
measurements were recorded to magnetic tape between

10 ° and 15% on the way to Tahiti and from 6°N to near
landing on the return flight•

The data can be plotted as ozone number density
versus latitude for various altitudes. In this manner, the

values from each of the three instruments can be plotted

together, as shown in Figure 2 for 19.5 and 23.5 kin.
The graphs show that the ozone decrease was greatest in
the 6 °. 16°N latitude region, falling off rapidly from 160

- 20°N latitude as the aerosol density decreased by a
factor of 10, and falling off south of 10%. The three

sets of data are mutually consistent, with the ECC sonde
and UV DIAL values being quite similar, even though

they were taken over 100 ° apart in longitude and up to
a month apart in time. The larger decrease of ozone in
the Northern Hemisphere is again consistent with an in-

creased aerosol loading at that time as depicted by the
AVHRR.
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Figure 2. Graphs of tropical ozone from three instruments at

altitudes of 19.5 and 23.5, averaged over 1 kin. The SAGE

II data are climatological data from 1987 and 1989. The UV

DIAL are from the end of January 1992, while the ECC sonde

data are from 1anuary/February 1992. The aerosol units are
107 t_m_m -_.

4. SUMMARY AND CONCLUSIONS

Data showing large decreases in tropical ozone
due to the presence of volcanic aerosol has been present-

ed which is beyond the 2-0 value from climatological
ozone records. There also appears to be evidence for
increases of ozone in the 28- to 31-km region that are
about at the 2-o values for SAGE II data. The mecha-

nisms responsible for the ozone changes were not well
known at the time of the Symposium, in part because
not enough data were available on the abundance of

chemical species present in the tropical lower _trato-
sphere in the presence of Mt. Pinatubo aerosols. It will

be interesting to see what can be learned by other strato-

spheric ozone measuring instruments [Grant, 1989].
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