579 research outputs found

    Dependence of the Electroluminescence on the Spacer Layer Growth Temperature of Multilayer Quantum-Dot Laser Structures

    Get PDF
    Electroluminescence (EL) measurements have been performed on a set of In(Ga)As-GaAs quantum-dot (QD) structures with varying spacer layer growth temperature. At room temperature and low injection current, a superlinear dependence of the integrated EL intensity (IEL) on the injection current is observed. This superlinearity decreases as the spacer layer growth temperature increases and is attributed to a reduction in the amount of nonradiative recombination. Temperature-dependent IEL measurements show a reduction of the IEL with increasing temperature. Two thermally activated quenching processes, with activation energies of ˜ 157 meV and ˜ 320 meV, are deduced and these are attributed to the loss of electrons and holes from the QD ground state to the GaAs barriers. Our results demonstrate that growing the GaAs barriers at higher temperatures improves their quality, thereby increasing the radiative efficiency of the QD emission

    Longitudinal double-spin asymmetry and cross section for inclusive neutral pion production at midrapidity in polarized proton collisions at sqrt(s) = 200 GeV

    Get PDF
    We report a measurement of the longitudinal double-spin asymmetry A_LL and the differential cross section for inclusive Pi0 production at midrapidity in polarized proton collisions at sqrt(s) = 200 GeV. The cross section was measured over a transverse momentum range of 1 < p_T < 17 GeV/c and found to be in good agreement with a next-to-leading order perturbative QCD calculation. The longitudinal double-spin asymmetry was measured in the range of 3.7 < p_T < 11 GeV/c and excludes a maximal positive gluon polarization in the proton. The mean transverse momentum fraction of Pi0's in their parent jets was found to be around 0.7 for electromagnetically triggered events.Comment: 6 pages, 3 figures, submitted to Phys. Rev. D (RC

    Energy and system size dependence of \phi meson production in Cu+Cu and Au+Au collisions

    Get PDF
    We study the beam-energy and system-size dependence of \phi meson production (using the hadronic decay mode \phi -- K+K-) by comparing the new results from Cu+Cu collisions and previously reported Au+Au collisions at \sqrt{s_NN} = 62.4 and 200 GeV measured in the STAR experiment at RHIC. Data presented are from mid-rapidity (|y|<0.5) for 0.4 < pT < 5 GeV/c. At a given beam energy, the transverse momentum distributions for \phi mesons are observed to be similar in yield and shape for Cu+Cu and Au+Au colliding systems with similar average numbers of participating nucleons. The \phi meson yields in nucleus-nucleus collisions, normalised by the average number of participating nucleons, are found to be enhanced relative to those from p+p collisions with a different trend compared to strange baryons. The enhancement for \phi mesons is observed to be higher at \sqrt{s_NN} = 200 GeV compared to 62.4 GeV. These observations for the produced \phi(s\bar{s}) mesons clearly suggest that, at these collision energies, the source of enhancement of strange hadrons is related to the formation of a dense partonic medium in high energy nucleus-nucleus collisions and cannot be alone due to canonical suppression of their production in smaller systems.Comment: 20 pages and 5 figure

    Longitudinal scaling property of the charge balance function in Au + Au collisions at 200 GeV

    Get PDF
    We present measurements of the charge balance function, from the charged particles, for diverse pseudorapidity and transverse momentum ranges in Au + Au collisions at 200 GeV using the STAR detector at RHIC. We observe that the balance function is boost-invariant within the pseudorapidity coverage [-1.3, 1.3]. The balance function properly scaled by the width of the observed pseudorapidity window does not depend on the position or size of the pseudorapidity window. This scaling property also holds for particles in different transverse momentum ranges. In addition, we find that the width of the balance function decreases monotonically with increasing transverse momentum for all centrality classes.Comment: 6 pages, 3 figure

    Measurement of the Bottom contribution to non-photonic electron production in p+pp+p collisions at s\sqrt{s} =200 GeV

    Get PDF
    The contribution of BB meson decays to non-photonic electrons, which are mainly produced by the semi-leptonic decays of heavy flavor mesons, in p+pp+p collisions at s=\sqrt{s} = 200 GeV has been measured using azimuthal correlations between non-photonic electrons and hadrons. The extracted BB decay contribution is approximately 50% at a transverse momentum of pT5p_{T} \geq 5 GeV/cc. These measurements constrain the nuclear modification factor for electrons from BB and DD meson decays. The result indicates that BB meson production in heavy ion collisions is also suppressed at high pTp_{T}.Comment: 6 pages, 4 figures, accepted by PR

    Observation of hard scattering in photoproduction events with a large rapidity gap at HERA

    Get PDF
    Events with a large rapidity gap and total transverse energy greater than 5 GeV have been observed in quasi-real photoproduction at HERA with the ZEUS detector. The distribution of these events as a function of the γp\gamma p centre of mass energy is consistent with diffractive scattering. For total transverse energies above 12 GeV, the hadronic final states show predominantly a two-jet structure with each jet having a transverse energy greater than 4 GeV. For the two-jet events, little energy flow is found outside the jets. This observation is consistent with the hard scattering of a quasi-real photon with a colourless object in the proton.Comment: 19 pages, latex, 4 figures appended as uuencoded fil

    Cosmological Constraints on Decaying Dark Matter

    Full text link
    We present a complete analysis of the cosmological constraints on decaying dark matter. Previous analyses have used the cosmic microwave background and Type Ia supernova. We have updated them with the latest data as well as extended the analysis with the inclusion of Lyman-α\alpha forest, large scale structure and weak lensing observations. Astrophysical constraints are not considered in the present paper. The bounds on the lifetime of decaying dark matter are dominated by either the late-time integrated Sachs-Wolfe effect for the scenario with weak reionization, or CMB polarization observations when there is significant reionization. For the respective scenarios, the lifetimes for decaying dark matter are Γ1100\Gamma^{-1} \gtrsim 100 Gyr and (fΓ)15.3×108 (f \Gamma) ^{-1} \gtrsim 5.3 \times 10^8 Gyr (at 95.4% confidence level), where the phenomenological parameter ff is the fraction of the decay energy deposited in baryonic gas. This allows us to constrain particle physics models with dark matter candidates through investigation of dark matter decays into Standard Model particles via effective operators. For decaying dark matter of 100\sim 100 GeV mass, we found that the size of the coupling constant in the effective dimension-4 operators responsible for dark matter decay has to generically be 1022 \lesssim 10^{-22}. We have also explored the implications of our analysis for representative models in theories of gauge-mediated supersymmetry breaking, minimal supergravity and little Higgs.Comment: 29 pages, 6 figures. Added references and corrected typos as well as grammatical oversight

    Focal CA3 hippocampal subfield atrophy following LGI1 VGKC-complex antibody limbic encephalitis

    Get PDF
    Magnetic resonance imaging has linked chronic voltage-gated potassium channel (VGKC) complex antibody-mediated limbic encephalitis with generalized hippocampal atrophy. However, autoantibodies bind to specific rodent hippocampal subfields. Here, human hippocampal subfield (subiculum, cornu ammonis 1-3, and dentate gyrus) targets of immunomodulation-treated LGI1 VGKC-complex antibody-mediated limbic encephalitis were investigated using in vivo ultra-high resolution (0.39 0.39 1.0 mm3 ) 7.0 T magnetic resonance imaging [n = 18 patients, 17 patients (94%) positive for LGI1 antibody and one patient negative for LGI1/CASPR2 but positive for VGKC-complex antibodies, mean age: 64.0 2.55 years, median 4 years post-limbic encephalitis onset; n = 18 controls]. First, hippocampal subfield quantitative morphometry indicated significant volume loss confined to bilateral CA3 [F(1,34) = 16.87, P 5 0.0001], despite hyperintense signal evident in 5 of 18 patients on presentation. Second, early and later intervention (53 versus 43 months from symptom onset) were associated with CA3 atrophy. Third, whole-brain voxel-by-voxel morphometry revealed no significant grey matter loss. Fourth, CA3 subfield atrophy was associated with severe episodic but not semantic amnesia for postmorbid autobiographical events that was predicted by variability in CA3 volume. The results raise important questions about the links with histopathology, the impact of the observed focal atrophy on other CA3-mediated reconstructive and episodic mechanisms, and the role of potential antibody-mediated pathogenicity as part of the pathophysiology cascade in humans.The work was supported by the Medical Research Council (UK) and Engineering and Physical Sciences Research Council (P.A.G.), National Institute for Health Research (T.W.C.N.), National Institute for Health Research (NIHR) Oxford Biomedical Research Centre based at Oxford University Hospitals NHS Trust and University of Oxford (C.R.R., A.MA.D., C.K., & A.V.), John Fell OUP Fund (C.R.R, C.K.), Clinical Training Fellowship from the Guarantors of Brain (T.D.M.), the Patrick Berthoud Charitable Trust (T.D.M), the Encephalitis Society (T.D.M), and the Wellcome Trust (M.H.

    Tissue specific mutagenic and carcinogenic responses in NER defective mouse models.

    Get PDF
    Several mouse models with defects in genes encoding components of the nucleotide excision repair (NER) pathway have been developed. In NER two different sub-pathways are known, i.e. transcription-coupled repair (TC-NER) and global-genome repair (GG-NER). A defect in one particular NER protein can lead to a (partial) defect in GG-NER, TC-NER or both. GG-NER defects in mice predispose to cancer, both spontaneous as well as UV-induced. As such these models (Xpa, Xpc and Xpe) recapitulate the human xeroderma pigmentosum (XP) syndrome. Defects in TC-NER in humans are associated with Cockayne syndrome (CS), a disease not linked to tumor development. Mice with TC-NER defects (Csa and Csb) are - except for the skin - not susceptible to develop (carcinogen-induced) tumors. Some NER factors, i.e. XPB, XPD, XPF, XPG and ERCC1 have functions outside NER, like transcription initiation and inter-strand crosslink repair. Deficiencies in these processes in mice lead to very severe phenotypes, like trichothiodystrophy (TTD) or a combination of XP and CS. In most cases these animals have a (very) short life span, display segmental progeria, but do not develop tumors. Here we will overview the available NER-related mouse models and will discuss their phenotypes in terms of (chemical-induced) tissue-specific tumor development, mutagenesis and premature aging features
    corecore