619 research outputs found
Acupuncture for frozen-thawed embryo transfer cycles: A double-blind randomized controlled trial
The role of acupuncture on the pregnancy rate has not been evaluated in frozen-thawed embryo transfer (FET) cycles. This randomized double-blind study aimed to determine whether acupuncture performed on the day of FET improves clinical outcomes. On the day of FET, 226 patients were randomly allocated to either real or placebo acupuncture according to a computergenerated randomization list in sealed opaque envelopes. They received a session of real or placebo acupuncture for 25 min on site immediately after FET. The anxiety level and serum cortisol concentration were evaluated before and after real and placebo acupuncture. There were no significant differences in rates of overall pregnancy, clinical pregnancy, ongoing pregnancy, live birth and implantation in the placebo acupuncture group, when compared with the real acupuncture group. The anxiety level and serum cortisol concentration were similar for both groups. Only the placebo acupuncture group had significantly higher ongoing pregnancy (P = 0.022) and implantation rates (P = 0.038) than those who declined to join the study and received no acupuncture. In conclusion, comparable pregnancy and live birth rates of FET treatment were found in patients who had one session of real or placebo acupuncture after FET. © 2010, Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.postprin
Recommended from our members
Collaborative development of diffraction-limited beamline optical systems at US DOE light sources
An ongoing collaboration among four US Department of Energy (DOE) National Laboratories has demonstrated key technology prototypes and software modeling tools required for new high-coherent flux beamline optical systems. New free electron laser (FEL) and diffraction-limited storage ring (DLSR) light sources demand wavefront preservation from source to sample to achieve and maintain optimal performance. Fine wavefront control was achieved using a novel, roomtemperature cooled mirror system called REAL (resistive element adjustable length) that combines cooling with applied, spatially variable auxiliary heating. Single-grating shearing interferometry (also called Talbot interferometry) and Hartmann wavefront sensors were developed and used for optical characterization and alignment on several beamlines, across a range of photon energies. Demonstrations of non-invasive hard x-ray wavefront sensing were performed using a thin diamond single-crystal as a beamsplitter
The Use of Orthologous Sequences to Predict the Impact of Amino Acid Substitutions on Protein Function
Computational predictions of the functional impact of genetic variation play a critical role in human genetics research. For nonsynonymous coding variants, most prediction algorithms make use of patterns of amino acid substitutions observed among homologous proteins at a given site. In particular, substitutions observed in orthologous proteins from other species are often assumed to be tolerated in the human protein as well. We examined this assumption by evaluating a panel of nonsynonymous mutants of a prototypical human enzyme, methylenetetrahydrofolate reductase (MTHFR), in a yeast cell-based functional assay. As expected, substitutions in human MTHFR at sites that are well-conserved across distant orthologs result in an impaired enzyme, while substitutions present in recently diverged sequences (including a 9-site mutant that “resurrects” the human-macaque ancestor) result in a functional enzyme. We also interrogated 30 sites with varying degrees of conservation by creating substitutions in the human enzyme that are accepted in at least one ortholog of MTHFR. Quite surprisingly, most of these substitutions were deleterious to the human enzyme. The results suggest that selective constraints vary between phylogenetic lineages such that inclusion of distant orthologs to infer selective pressures on the human enzyme may be misleading. We propose that homologous proteins are best used to reconstruct ancestral sequences and infer amino acid conservation among only direct lineal ancestors of a particular protein. We show that such an “ancestral site preservation” measure outperforms other prediction methods, not only in our selected set for MTHFR, but also in an exhaustive set of E. coli LacI mutants
Top A_FB at the Tevatron vs. charge asymmetry at the LHC in chiral U(1) flavor models with flavored Higgs doublets
We consider the top forward-backward (FB) asymmetry at the Tevatron and top
charge asymmetry at the LHC within chiral U(1)^\prime models with
flavor-dependent U(1)^\prime charges and flavored Higgs fields, which were
introduced in the ref. [65]. The models could enhance not only the top
forward-backward asymmetry at Tevatron, but also the top charge asymmetry at
LHC, without too large same-sign top pair production rates. We identify
parameter spaces for the U(1)^\prime gauge boson and (pseudo)scalar Higgs
bosons where all the experimental data could be accommodated, including the
case with about 125 GeV Higgs boson, as suggested recently by ATLAS and CMS.Comment: 11 pages, 6 figures, figures and discussion adde
Neutrophil mobilization via plerixafor-mediated CXCR4 inhibition arises from lung demargination and blockade of neutrophil homing to the bone marrow
Blood neutrophil homeostasis is essential for successful host defense against invading pathogens. Circulating neutrophil counts are positively regulated by CXCR2 signaling and negatively regulated by the CXCR4-CXCL12 axis. In particular, G-CSF, a known CXCR2 signaler, and plerixafor, a CXCR4 antagonist, have both been shown to correct neutropenia in human patients. G-CSF directly induces neutrophil mobilization from the bone marrow (BM) into the blood, but the mechanisms underlying plerixafor-induced neutrophilia remain poorly defined. Using a combination of intravital multiphoton microscopy, genetically modified mice and novel in vivo homing assays, we demonstrate that G-CSF and plerixafor work through distinct mechanisms. In contrast to G-CSF, CXCR4 inhibition via plerixafor does not result in neutrophil mobilization from the BM. Instead, plerixafor augments the frequency of circulating neutrophils through their release from the marginated pool present in the lung, while simultaneously preventing neutrophil return to the BM. Our study demonstrates for the first time that drastic changes in blood neutrophils can originate from alternative reservoirs other than the BM, while implicating a role for CXCR4-CXCL12 interactions in regulating lung neutrophil margination. Collectively, our data provides valuable insights into the fundamental regulation of neutrophil homeostasis, which may lead to the development of improved treatment regimens for neutropenic patients.This research was funded by SIgN, A*STAR, Singapore. C.N.Z. Mattar and J.K.Y. Chan received salary support from the National Medical Research Council of Singapore (NMRC/TA/003/2012 and NMRC/CSA/012/2009, respectively).S
Opposing roles for JNK and Aurora A in regulating the association of WDR62 with spindle microtubules
WD40-repeat protein 62 (WDR62) is a spindle pole protein required for normal cell division and neuroprogenitor differentiation during brain development. Microcephaly-associated mutations in WDR62 lead to mitotic mislocalization, highlighting a crucial requirement for precise WDR62 spatiotemporal distribution, although the regulatory mechanisms are unknown. Here, we demonstrate that the WD40-repeat region of WDR62 is required for microtubule association, whereas the disordered C-terminal region regulates cell-cycledependent compartmentalization. In agreement with a functional requirement for the WDR62-JNK1 complex during neurogenesis, WDR62 specifically recruits JNK1 (also known as MAPK8), but not JNK2 (also known as MAPK9), to the spindle pole. However, JNKmediated phosphorylation of WDR62 T1053 negatively regulated microtubule association, and loss of JNK signaling resulted in constitutive WDR62 localization to microtubules irrespective of cell cycle stage. In contrast, we identified that Aurora A kinase (AURKA) and WDR62 were in complex and that AURKA-mediated phosphorylation was required for the spindle localization of WDR62 during mitosis. Our studies highlight complex regulation of WDR62 localization, with opposing roles for JNK and AURKA in determining its spindle association
The Yuan-Tseh Lee Array for Microwave Background Anisotropy
The Yuan-Tseh Lee Array for Microwave Background Anisotropy (AMiBA) is the
first interferometer dedicated to studying the cosmic microwave background
(CMB) radiation at 3mm wavelength. The choice of 3mm was made to minimize the
contributions from foreground synchrotron radiation and Galactic dust emission.
The initial configuration of seven 0.6m telescopes mounted on a 6-m hexapod
platform was dedicated in October 2006 on Mauna Loa, Hawaii. Scientific
operations began with the detection of a number of clusters of galaxies via the
thermal Sunyaev-Zel'dovich effect. We compare our data with Subaru weak lensing
data in order to study the structure of dark matter. We also compare our data
with X-ray data in order to derive the Hubble constant.Comment: accepted for publication in ApJ (13 pages, 7 figures); a version with
high resolution figures available at
http://www.asiaa.sinica.edu.tw/~keiichi/upfiles/AMiBA7/pho_highreso.pd
- …