13 research outputs found

    GRB 190114C in the nuclear region of an interacting galaxy A detailed host analysis using ALMA, the HST, and the VLT

    Get PDF
    Context. For the first time, very high energy emission up to the TeV range has been reported for a gamma-ray burst (GRB). It is still unclear whether the environmental properties of GRB 190114C might have contributed to the production of these very high energy photons, or if it is solely related to the released GRB emission. Aims. The relatively low redshift of the GRB (z = 0.425) allows us to study the host galaxy of this event in detail, and to potentially identify idiosyncrasies that could point to progenitor characteristics or environmental properties that might be responsible for this unique event. Methods. We used ultraviolet, optical, infrared, and submillimetre imaging and spectroscopy obtained with the HST, the VLT, and ALMA to obtain an extensive dataset on which the analysis of the host galaxy is based. Results. The host system is composed of a close pair of interacting galaxies (Δv = 50 km s−1), both of which are well detected by ALMA in CO(3-2). The GRB occurred within the nuclear region (∼170 pc from the centre) of the less massive but more star-forming galaxy of the pair. The host is more massive (log(M/M⊙) = 9.3) than average GRB hosts at this redshift, and the location of the GRB is rather unique. The higher star formation rate was probably triggered by tidal interactions between the two galaxies. Our ALMA observations indicate that both host galaxy and companion have a high molecular gas fraction, as has been observed before in interacting galaxy pairs. Conclusions. The location of the GRB within the core of an interacting galaxy with an extinguished line of sight is indicative of a denser environment than typically observed for GRBs and could have been crucial for the generation of the very high energy photons that were observed

    The Southern Wide-Field Gamma-Ray Observatory (SWGO): A Next-Generation Ground-Based Survey Instrument for VHE Gamma-Ray Astronomy

    Get PDF
    We describe plans for the development of the Southern Wide-field Gamma-ray Observatory (SWGO), a next-generation instrument with sensitivity to the very-high-energy (VHE) band to be constructed in the Southern Hemisphere. SWGO will provide wide-field coverage of a large portion of the southern sky, effectively complementing current and future instruments in the global multi-messenger effort to understand extreme astrophysical phenomena throughout the universe. A detailed description of science topics addressed by SWGO is available in the science case white paper [1]. The development of SWGO will draw on extensive experience within the community in designing, constructing, and successfully operating wide-field instruments using observations of extensive air showers. The detector will consist of a compact inner array of particle detection units surrounded by a sparser outer array. A key advantage of the design of SWGO is that it can be constructed using current, already proven technology. We estimate a construction cost of 54M USD and a cost of 7.5M USD for 5 years of operation, with an anticipated US contribution of 20M USD ensuring that the US will be a driving force for the SWGO effort. The recently formed SWGO collaboration will conduct site selection and detector optimization studies prior to construction, with full operations foreseen to begin in 2026. Throughout this document, references to science white papers submitted to the Astro2020 Decadal Survey with particular relevance to the key science goals of SWGO, which include unveiling Galactic particle accelerators [2-10], exploring the dynamic universe [11-21], and probing physics beyond the Standard Model [22-25], are highlighted in red boldface

    Attitudes, knowledge, and actions with regard to organ donation among Hong Kong medical students

    No full text
    Objective: To study attitudes, knowledge, and actions of local medical students with regard to organ donation and self-perceived confidence and competence in approaching potential organ donors. Design: Cross-sectional questionnaire survey. Setting: Faculty of Medicine, The University of Hong Kong, Hong Kong. Participants: Medical students, years 1-5. Main outcome measures: Knowledge on various aspects of organ donation was assessed, and students' self-evaluated competence and confidence about counselling for organ donation was evaluated. Factors influencing attitudes and actions were determined. Results: The response rate was 94% (655/694). A majority (85%) had a 'positive' attitude, but only a small proportion (23%) had signed the organ donation card. Inconvenience and lack of knowledge about organ donor registration, and concerns about premature termination of medical treatment accounted for such discrepancies. Socio-cultural factors such as the traditional Chinese belief in preservation of an intact body after death, unease discussing death-related issues, and family objections to organ donation were significantly associated with a 'negative' attitude. Knowledge and action increased with medical education yet only a small proportion of medical students felt competent and confident in counselling patients on organ donation. Conclusions: The medical curriculum should increase medical students' awareness of the organ shortage problem. The donor registration system should be made more convenient and public education is recommended to correct misconceptions.published_or_final_versio
    corecore