142 research outputs found

    Direct Electron Microscopy Study on the Morphological Diversity of Bacteriophage Populations in Lake Plußsee

    Get PDF
    Direct electron microscopy of bacteriophages adsorbed to a carbon film without prior enrichment by specific host strains or concentration by physical or chemical methods was used to study the morphological diversity of natural bacteriophage assemblages in a North German lake. All samples contained a mixture of morphologically different tailed viruses, which were regarded as bacteriophages. Most of them had isometric heads and long noncontractile tails, belonging to morphotype B1 (Siphoviridae). In addition, members of morphotypes A1 (Myoviridae), B2 (Siphoviridae with elongated heads), and C1 (Podoviridae) were present in lower numbers. Only one cubic virus was detected, while no filamentous or pleomorphic phages were found. Up to 11 different phages per sample, and a total of 39 phages when all samples were considered together, could be distinguished by morphological criteria. The total number of phages was estimated to be on the order of 108/ml

    Virion Positions and Relationships of Lactococcal Temperate Bacteriophage TP901-1 Proteins

    Get PDF
    AbstractThe major proteins of phage TP901-1 virion were characterized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and structural relations were determined using specific antibodies, obtained by affinity purification from a polyclonal serum. A 23-kDa protein was identified as the major tail protein, and a 31-kDa molecule as the major head protein, respectively. Labeling experiments with antibodies against two proteins, with molecular masses of 20 and 19 kDa, indicated that they were baseplate-related components. A 72-kDa protein was found to be part of a neck passage structure, which includes a collar. Evidence for the presence of attached whiskers was also obtained. T7 RNA polymerase-mediated expression of the two major proteins confirmed the gene location of the previously sequenced region of the phage genome. The relation to other lactococcal phages was determined by DNA hybridization and antibody probing, showing that despite low DNA similarity, TP901-1 NPS epitopes were detected in both related and unrelated small isometric-headed phages

    Isolation of a Novel Phage with Activity against Streptococcus mutans Biofilms

    Get PDF
    peer-reviewedStreptococcus mutans is one of the principal agents of caries formation mainly, because of its ability to form biofilms at the tooth surface. Bacteriophages (phages) are promising antimicrobial agents that could be used to prevent or treat caries formation by S. mutans. The aim of this study was to isolate new S. mutans phages and to characterize their antimicrobial properties. A new phage, ɸAPCM01, was isolated from a human saliva sample. Its genome was closely related to the only two other available S. mutans phage genomes, M102 and M102AD. ɸAPCM01 inhibited the growth of S. mutans strain DPC6143 within hours in broth and in artificial saliva at multiplicity of infections as low as 2.5x10-5. In the presence of phage ɸAPCM01 the metabolic activity of a S. mutans biofilm was reduced after 24 h of contact and did not increased again after 48 h, and the live cells in the biofilm decreased by at least 5 log cfu/ml. Despite its narrow host range, this newly isolated S. mutans phage exhibits promising antimicrobial properties

    Pectobacterium atrosepticum phage vB_PatP_CB5: A member of the proposed genus ‘Phimunavirus’

    Get PDF
    © 2018 by the authors. Licensee MDPI, Basel, Switzerland. Pectobacterium atrosepticum is a phytopathogen of economic importance as it is the causative agent of potato blackleg and soft rot. Here we describe the Pectobacterium phage vB_PatP_CB5 (abbreviated as CB5), which specifically infects the bacterium. The bacteriophage is characterized in detail and TEM micrographs indicate that it belongs to the Podoviridae family. CB5 shares significant pairwise nucleotide identity (≥80%) with P. atrosepticum phages 'M1, Peat1, and PP90 and also shares common genome organization. Phylograms constructed using conserved proteins and whole-genome comparison-based amino acid sequences show that these phages form a distinct clade within the Autographivirinae. They also possess conserved RNA polymerase recognition and specificity loop sequences. Their lysis cassette resembles that of KP34virus, containing in sequential order a U-spanin, a holin, and a signal–arrest–release (SAR) endolysin. However, they share low pairwise nucleotide identity with the type phage of the KP34virus genus, Klebsiella phage KP34. In addition, phage KP34 does not possess several conserved proteins associated with these P. atrosepticum phages. As such, we propose the allocation of phages CB5, Peat1, 'M1, and PP90 to a separate new genus designated Phimunavirus

    Phages of non-dairy lactococci: isolation and characterization of ΦL47, a phage infecting the grass isolate Lactococcus lactis ssp. cremoris DPC6860

    Get PDF
    peer reviewedLactococci isolated from non-dairy sources have been found to possess enhanced metabolic activity when compared to dairy strains. These capabilities may be harnessed through the use of these strains as starter or adjunct cultures to produce more diverse flavor profiles in cheese and other dairy products. To understand the interactions between these organisms and the phages that infect them, a number of phages were isolated against lactococcal strains of non-dairy origin. One such phage, ΦL47, was isolated from a sewage sample using the grass isolate L. lactis ssp. cremoris DPC6860 as a host. Visualization of phage virions by transmission electron microscopy established that this phage belongs to the family Siphoviridae and possesses a long tail fiber, previously unseen in dairy lactococcal phages. Determination of the lytic spectrum revealed a broader than expected host range, with ΦL47 capable of infecting 4 industrial dairy strains, including ML8, HP and 310, and 3 additional non-dairy isolates. Whole genome sequencing of ΦL47 revealed a dsDNA genome of 128, 546 bp, making it the largest sequenced lactococcal phage to date. In total, 190 open reading frames (ORFs) were identified, and comparative analysis revealed that the predicted products of 117 of these ORFs shared greater than 50% amino acid identity with those of L. lactis phage Φ949, a phage isolated from cheese whey. Despite their different ecological niches, the genomic content and organization of ΦL47 and Φ949 are quite similar, with both containing 4 gene clusters oriented in different transcriptional directions. Other features that distinguish ΦL47 from Φ949 and other lactococcal phages, in addition to the presence of the tail fiber and the genome length, include a low GC content (32.5%) and a high number of predicted tRNA genes (8). Comparative genome analysis supports the conclusion that ΦL47 is a new member of the 949 lactococcal phage group which currently includes the dairy Φ949

    The first characterized phage against a member of the ecologically important sphingomonads reveals high dissimilarity against all other known phages

    Get PDF
    Abstract This study describes the first molecular characterization of a bacteriophage infecting a member of the environmentally important Sphingomonadaceae family. Both bacteriophage Lacusarx and its host Sphingobium sp. IP1 were isolated from activated sludge from a wastewater treatment plant. Genome sequencing revealed that the phage genes display little similarity to other known phages, despite a remarkable conservation of the synteny in which the functional genes occur among distantly related phages. Phylogenetic analyses confirmed that Lacusarx represents a hitherto undescribed genus of phages. A classical lysis cassette could not be identified in Lacusarx, suggesting that the genes encoding endolysin, holin, and spanin are host-specific and not found in phages infecting other bacteria. The virus harbors 24 tRNA genes corresponding to 18 different amino acids and furthermore has a significantly different codon usage than its host. Proteomic analysis of Lacusarx revealed the protein components of the phage particle. A lysogeny test indicated that Lacusarx is not a temperate phage

    Complete genome sequences of four novel <i>Lactococcus lactis</i> phages distantly related to the Rare 1706 Phage Species

    Get PDF
    Lactoccocus lactis is a Gram-positive bacterium widely used in the dairy industry in the production of an array of cheeses and other fermented milk products. Here, we describe the sequencing and genome annotations of a set of four phages virulent to L. lactis and exhibiting similarities to phage 1706

    First Molecular Characterization of Siphoviridae-Like Bacteriophages Infecting Staphylococcus hyicus in a Case of Exudative Epidermitis

    Get PDF
    Exudative epidermitis (EE), also known as greasy pig disease, is one of the most frequent skin diseases affecting piglets. Zoonotic infections in human occur. EE is primarily caused by virulent strains of Staphylococcus (S.) hyicus. Generally, antibiotic treatment of this pathogen is prone to decreasing success, due to the incremental development of multiple resistances of bacteria against antibiotics. Once approved, bacteriophages might offer interesting alternatives for environmental sanitation or individualized treatment, subject to the absence of virulence and antimicrobial resistance genes. However, genetic characterization of bacteriophages for S. hyicus has, so far, been missing. Therefore, we investigated a piglet raising farm with a stock problem due to EE. We isolated eleven phages from the environment and wash water of piglets diagnosed with the causative agent of EE, i.e., S. hyicus. The phages were morphologically characterized by electron microscopy, where they appeared Siphoviridae-like. The genomes of two phages were sequenced on a MiSeq instrument (Illumina), resulting in the identification of a new virulent phage, PITT-1 (PMBT8), and a temperate phage, PITT-5 (PMBT9). Sequencing of three host bacteria (S. hyicus) from one single farm revealed the presence of two different strains with genes coding for two different exfoliative toxin genes, i.e., exhA (2 strains) and exhC (1 strain). The exhC-positive S. hyicus strain was only weakly lysed by most lytic phages. The occurrence of different virulent S. hyicus strains in the same outbreak limits the prospects for successful phage treatment and argues for the simultaneous use of multiple and different phages attacking the same host

    Genome sequence of jumbo phage vB_AbaM_ME3 of Acinetobacter baumanni

    Get PDF
    Bacteriophage (phage) vB_AbaM_ME3 was previously isolated from wastewater effluent using the propagating host Acinetobacter baumannii DSM 30007. The full genome was sequenced, revealing it to be the largest Acinetobacter bacteriophage sequenced to date with a size of 234,900 bp and containing 326 open reading frames (ORFs)

    Investigating the biocontrol and anti-biofilm potential of a three phage cocktail against Cronobacter sakazakii in different brands of infant formula

    Get PDF
    Supplementary data to this article can be found online at: http://dx. doi.org/10.1016/j.ijfoodmicro.2017.04.009.In recent years, the microbiological safety of powdered infant formula has gained increasing attention due to the identification of contaminating C. sakazakii and its epidemiological link with life-threatening neonatal infections. Current intervention strategies have fallen short of ensuring the production of infant formula that is free from C. sakazakii. In this study, we describe the isolation and characterisation of three bacteriophages (phages) and their application as a phage cocktail to inhibit the growth of C. sakazakii in different brands of infant formula, while also assessing the phages ability to prevent biofilm formation. All three phages, isolated from slurry, possess a relatively broad host range, verified by their ability to infect across genera and species. When all three phages were combined and used as part of a phage cocktail, 73% coverage was obtained across all Cronobacter strains tested. Optimum thermo-tolerance and pH stability were determined between 4 °C37 °C, and pH 68, respectively, well within the normal range of application of infant formula. Genome sequencing and analysis revealed all the phages to be free from lysogenic properties, a trait which renders each favourable for phage therapy applications. As such, the combined-phage preparation (3 × 108 pfu/mL) was found to possess a strong bactericidal effect on C. sakazakii/C. sakazakii LUX cells ( 104 cfu/mL), resulting in a significant reduction in cell numbers, to below the limit of detection (< 10 cfu/mL). This was observed following a 20 h challenge in different brands of infant formula, where samples in the absence of the phage cocktail reached concentrations of ~ 109 cfu/mL. The phage cocktail also demonstrated promise in preventing the establishment of biofilm, as biofilm formation could not be detected for up to 48 h post treatment. These results highlight the potential application of this phage preparation for biocontrol of C. sakazakii contamination in reconstituted infant formula and also as a preventative agent against biofilm formation.This work was funded by Technological Sector Research Strand III ref. CRS/07/CR03. Angela Back from MRI Kiel is acknowledged for technical assistance in preparations for electron microscopy. Hugo Oliveira and Rob Lavigne contributed to the genome sequencing analysis, supported by the KULeuven GOA (GOA/15/006) Grant Phagebiosystems.info:eu-repo/semantics/publishedVersio
    corecore