995 research outputs found

    Effects of metal cation substitution on hexavalent chromium reduction by green rust

    Get PDF
    Chromium contamination is a serious environmental issue in areas affected by leather tanning and metal plating, and green rust sulfate has been tested extensively as a potential material for in situ chemical reduction of hexavalent chromium in groundwater. Reported products and mechanisms for the reaction have varied, most likely because of green rust’s layered structure, as reduction at outer and interlayer surfaces might produce different reaction products with variable stabilities. Based on studies of Cr(III) oxidation by biogenic Mn (IV) oxides, Cr mobility in oxic soils is controlled by the solubility of the Cr(III)-bearing phase. Therefore, careful engineering of green rust properties, i.e., crystal/particle size, morphology, structure, and electron availability, is essential for its optimization as a remediation reagent. In the present study, pure green rust sulfate and green rust sulfate with Al, Mg and Zn substitutions were synthesized and reacted with identical chromate (CrO42−) solutions. The reaction products were characterized by X-ray diffraction, pair distribution function analysis, X-ray absorption spectroscopy and transmission electron microscopy and treated with synthetic δ-MnO2 to assess how easily Cr(III) in the products could be oxidized. It was found that Mg substitution had the most beneficial effect on Cr lability in the product. Less than 2.5% of the Cr(III) present in the reacted Mg-GR was reoxidized by δ-MnO2 within 14 days, and the particle structure and Cr speciation observed during X-ray scattering and absorption analyses of this product suggested that Cr(VI) was reduced in its interlayer. Reduction in the interlayer lead to the linkage of newly-formed Cr(III) to hydroxyl groups in the adjacent octahedral layers, which resulted in increased structural coherency between these layers, distinctive rim domains, sequestration of Cr(III) in insoluble Fe oxide bonding environments resistant to reoxidation and partial transformation to Cr(III)-substituted feroxyhyte. Based on the results of this study of hexavalent chromium reduction by green rust sulfate and other studies, further improvements can also be made to this remediation technique by reacting chromate with a large excess of green rust sulfate, which provides excess Fe(II) that can catalyze transformation to more crystalline iron oxides, and synthesis of the reactant under alkaline conditions, which has been shown to favor chromium reduction in the interlayer of Fe(II)-bearing phyllosilicates

    On the Analysis of Simple Genetic Programming for Evolving Boolean Functions

    Get PDF
    This work presents a first step towards a systematic time and space complexity analysis of genetic programming (GP) for evolving functions with desired input/output behaviour. Two simple GP algorithms, called (1+1) GP and (1+1) GP*, equipped with minimal function (F) and terminal (L) sets are considered for evolving two standard classes of Boolean functions. It is rigorously proved that both algorithms are efficient for the easy problem of evolving conjunctions of Boolean variables with the minimal sets. However, if an extra function (i.e. NOT) is added to F, then the algorithms require at least exponential time to evolve the conjunction of n variables. On the other hand, it is proved that both algorithms fail at evolving the difficult parity function in polynomial time with probability at least exponentially close to 1. Concerning generalisation, it is shown how the quality of the evolved conjunctions depends on the size of the training set s while the evolved exclusive disjunctions generalize equally badly independent of s

    Products of Hexavalent Chromium Reduction by Green Rust Sodium Sulfate and Associated Reaction Mechanisms

    Get PDF
    The efficacy of in vitro Cr(VI) reduction by green rust sulfate suggests that this mineral is potentially useful for remediation of Cr-contaminated groundwater. Previous investigations studied this reaction but did not sufficiently characterize the intermediates and end products at chromate (CrO42−) concentrations typical of contaminant plumes, hindering identification of the dominant reaction mechanisms under these conditions. In this study, batch reactions at varying chromate concentrations and suspension densities were performed and the intermediate and final products of this reaction were analyzed using X-ray absorption spectroscopy and electron microscopy. This reaction produces particles that maintain the initial hexagonal morphology of green rust but have been topotactically transformed into a poorly crystalline Fe(III) oxyhydroxysulfate and are coated by a Cr (oxy) hydroxide layer that results from chromate reduction at the surface. Recent studies of the behavior of Cr(III) (oxy) hydroxides in soils have revealed that reductive transformation of CrO42− is reversible in the presence of Mn(IV) oxides, limiting the applicability of green rust for Cr remediation in some soils. The linkage of Cr redox speciation to existing Fe and Mn biogeochemical cycles in soils implies that modification of green rust particles to produce an insoluble, Cr(III)-bearing Fe oxide product may increase the efficacy of this technique

    The study of expanded tri-lobed flap in a rabbit model: possible flap model in ear reconstruction?

    Get PDF
    BACKGROUND: Local flaps are widely used in reconstructive surgery. Tri-lobed skin flap is a relatively new flap and there has been no experimental model of this flap. This flap can be used for repair of full thickness defects in the face, ears and alar region. Based on the size of ears in a rabbit, we designed a model of ear reconstruction using expanded tri-lobed flap. Local flaps are more advantageous in that they provide excellent color and texture matching up with those of the face, adequately restore ear contour, place scars in a favorable location and ideally accomplish these goals in a single stage with minimal donor site morbidity. METHODS: Eight adult New Zealand rabbits were divided into two groups. 50 ml round tissue expander were implanted to four rabbits. After completion of the expansion, a superiorly based tri-lobed flap was elevated and a new ear was created from the superior dorsal skin of each rabbit. Scintigraphy with Technetium-99m pertecnetate was performed to evaluate flap viability. RESULTS: Subtotal flap necrosis was seen in all animals in non-expanded group. New ear in dimensions of the original ear was created in expanded group without complication. Perfusion and viability of the flaps were proved by Technetium-99m pertecnetate scintigraphy. CONCLUSION: According to our knowledge this study is the first to demonstrate animal model in tri-lobed flap. Also, our technique is the first application of the trilobed flap to the possible ear reconstruction. We speculated that this flap may be used mastoid based without hair, in human. Also, tri-lobed flap may be an alternative in reconstruction of cylindrical organs such as penis or finger

    Origin of micro-scale heterogeneity in polymerisation of photo-activated resin composites

    Get PDF
    Photo-activated resin composites are widely used in industry and medicine. Despite extensive chemical characterisation, the micro-scale pattern of resin matrix reactive group conversion between filler particles is not fully understood. Using an advanced synchrotron-based wide-field IR imaging system and state-of-the-art Mie scattering corrections, we observe how the presence of monodispersed silica filler particles in a methacrylate based resin reduces local conversion and chemical bond strain in the polymer phase. Here we show that heterogeneity originates from a lower converted and reduced bond strain boundary layer encapsulating each particle, whilst at larger inter-particulate distances light attenuation and monomer mobility predominantly influence conversion. Increased conversion corresponds to greater bond strain, however, strain generation appears sensitive to differences in conversion rate and implies subtle distinctions in the final polymer structure. We expect these findings to inform current predictive models of mechanical behaviour in polymer-composite materials, particularly at the resin-filler interface

    Estimating the referral rate for cancer genetic assessment from a systematic review of the evidence

    Get PDF
    To estimate the optimal proportion of new patients diagnosed with cancer who require assessment and evaluation for familial cancer genetic risk, based on the best evidence available. We identified evidence of the patients who require assessment for familial genetic risk when diagnosed with cancer through extensive literature reviews and searches of guidelines. Epidemiological data on the distribution of cancer type, presence of a family history, age and other factors that influence referral for genetic assessment were identified. Decision trees were constructed to merge the evidence-based recommendations with the epidemiological data to calculate the optimal proportion of patients who should be referred. We identified ‘high probability' and ‘moderate probability' groups for having a genetic susceptibility. The proportion of patients diagnosed with cancer in Australia who have a high probability of having a genetic predisposition and who should be referred for genetic assessment is 1%. If the moderate probability group is also assessed this proportion increases to 6%. This model has identified the proportion of new patients diagnosed with cancer who should be referred for genetic assessment. This data is the first step in determining the resources required for provision of an adequate cancer genetic service
    corecore