97 research outputs found

    The self-enrichment of galactic halo globular clusters : a clue to their formation ?

    Get PDF
    We present a model of globular cluster self-enrichment. In the protogalaxy, cold and dense clouds embedded in the hot protogalactic medium are assumed to be the progenitors of galactic halo globular clusters. The massive stars of a first generation of metal-free stars, born in the central areas of the proto-globular cluster clouds, explode as Type II supernovae. The associated blast waves trigger the expansion of a supershell, sweeping all the material of the cloud, and the heavy elements released by these massive stars enrich the supershell. A second generation of stars is born in these compressed and enriched layers of gas. These stars can recollapse and form a globular cluster. This work aims at revising the most often encountered argument against self-enrichment, namely the presumed ability of a small number of supernovae to disrupt a proto-globular cluster cloud. We describe a model of the dynamics of the supershell and of its progressive chemical enrichment. We show that the minimal mass of the primordial cluster cloud required to avoid disruption by several tens of Type II supernovae is compatible with the masses usually assumed for proto-globular cluster clouds. Furthermore, the corresponding self-enrichment level is in agreement with halo globular cluster metallicities.Comment: 12 pages, 7 figures. Accepted for publication in Astronomy and Astrophysic

    Analysis of alpha Centauri AB including seismic constraints

    Full text link
    Detailed models of alpha Cen A and B based on new seismological data for alpha Cen B by Carrier & Bourban (2003) have been computed using the Geneva evolution code including atomic diffusion. Taking into account the numerous observational constraints now available for the alpha Cen system, we find a stellar model which is in good agreement with the astrometric, photometric, spectroscopic and asteroseismic data. The global parameters of the alpha Cen system are now firmly constrained to an age of t=6.52+-0.30 Gyr, an initial helium mass fraction Y_i=0.275+-0.010 and an initial metallicity (Z/X)_i=0.0434+-0.0020. Thanks to these numerous observational constraints, we confirm that the mixing-length parameter alpha of the B component is larger than the one of the A component, as already suggested by many authors (Noels et al. 1991, Fernandes & Neuforge 1995 and Guenther & Demarque 2000): alpha_B is about 8% larger than alpha_A (alpha_A=1.83+-0.10 and alpha_B=1.97+-0.10). Moreover, we show that asteroseismic measurements enable to determine the radii of both stars with a very high precision (errors smaller than 0.3%). The radii deduced from seismological data are compatible with the new interferometric results of Kervella et al. (2003) even if they are slightly larger than the interferometric radii (differences smaller than 1%).Comment: 13 pages, 9 figures, accepted for publication in A&

    Constraining fundamental stellar parameters using seismology. Application to Alpha Centauri AB

    Full text link
    We apply the Levenberg-Marquardt minimization algorithm to seismic and classical observables of the Alpha Cen binary system in order to derive the fundamental parameters of Alpha Cen A+B and to analyze the dependence of these parameters on the chosen observables, on their uncertainty and on the physics used in stellar modelling. The seismological data are those by Bouchy & Carrier (2002) for Alpha Cen A, and those by Carrier & Bourban (2003) for Alpha Cen B. We show that while the fundamental stellar parameters do not depend on the treatment of convection adopted (Mixing Length Theory -- MLT -- or ``Full Spectrum of Turbulence'' -- FST), the age of the system depends on the inclusion of gravitational settling, and is deeply biased by the small frequency separation of component B. We try to answer the question of the universality of the mixing length parameter, and we find a statistically reliable dependence of the alpha--parameter on the HR diagram location (with a trend similar to the one predicted by Ludwig et al.1999). We propose the frequency separation ratios introduced by Roxburgh & Voronstsov (2003) as better observables to determine the fundamental stellar parameters, and to use the large frequency separation and frequencies to extract information about the stellar structure. The effects of diffusion and equation of state on the oscillation frequencies are also studied, but present seismic data do not allow their detection.Comment: 15 pages, 8 figures, accepted by A&

    Upward Revision of the Individual Masses in Α Cen: Implications for the Evolutionary State of the System

    Full text link
    The recent upward revisions of the individual masses of the components of the binary system α Centauri (Pourbaix D., this meeting) led us to perform new calibrations of the system. The possibility of the onset a convective core in α Cen A is discussed together with its implications on the p-mode oscillation frequencies

    Influence of non-adiabatic temperature variations on line profile variations of slowly rotating beta Cephei stars and SPBs. II. Simulations of line profile time series

    Full text link
    We investigate to what extent non-adiabatic temperature variations at the surface of slowly rotating non-radially pulsating beta Cephei stars and slowly pulsating B stars affect silicon line profile variations. We use the non-adiabatic amplitudes of the effective temperature and gravity variation presented in Dupret et al. (\cite{Dupret02}), together with a Kurucz intensity grid, to compute time series of line profile variations. Our simulations point out that the line shapes do not change significantly due to temperature variations. We find equivalent width variations of at most two percent of the mean equivalent width. We confront our results with observational equivalent width variations and with photometrically obtained effective temperature variations. Based on observations obtained with the Swiss photometric telescope and with the ESO/CAT telescope, at La Silla in Chile

    X-Ray, FUV, and UV Observations of alpha Centauri B: Determination of Long-term Magnetic Activity Cycle and Rotation Period

    Full text link
    We have been carrying out a study of stellar magnetic activity, dynamos, atmospheric physics, and spectral irradiances from a sample of solar-type G0-5 V stars with different ages. One of the major goals of this program is to study the evolution of the Sun's X-ray through NUV spectral irradiances with age. Of particular interest is the determination of the young Sun's elevated levels of high-energy fluxes because of the critical roles that X-ray through FUV emissions play on the photochemical and photoionization evolution of early, young planetary atmospheres and ionospheres. Motivated by the current exoplanetary search missions that are hunting for earth-size planets in the habitable zones of nearby main-sequence G-M stars, we are expanding our program to cooler, less luminous, but much more numerous main-sequence K-type stars, such as alpha Centauri B. The long life (2-3x longer than our Sun) and slow evolution of K stars provide nearly constant energy sources for possible hosted planets. Presented here are X-ray, UV, and recently acquired FUV observations of the K1 V star alpha Cen B. These combined high-energy measures provide a more complete look into the nature of alpha Cen B's magnetic activity and X-UV radiances. We find that alpha Cen B has exhibited significant long-term variability in X-ray through NUV emission fluxes, indicating a solar-like long-term activity cycle of P_cycle = 8.84 years. In addition, analysis of the short-term rotational modulation of mean light due to the effects of magnetically active regions has yielded a well-determined rotation period of P_rotation = 36.2 days. alpha Cen B is the only old main-sequence K star with a reliably determined age and rotation period, and for early K-stars, is an important calibrator for stellar age/rotation/activity relations

    Solar scandium abundance

    No full text

    How Good a Clock is Rotation? The Stellar Rotation-Mass-Age Relationship for Old Field Stars

    Full text link
    The rotation-mass-age relationship offers a promising avenue for measuring the ages of field stars, assuming the attendant uncertainties to this technique can be well characterized. We model stellar angular momentum evolution starting with a rotation distribution from open cluster M37. Our predicted rotation-mass-age relationship shows significant zero-point offsets compared to an alternative angular momentum loss law and published gyrochronology relations. Systematic errors at the 30 percent level are permitted by current data, highlighting the need for empirical guidance. We identify two fundamental sources of uncertainty that limit the precision of rotation-based ages and quantify their impact. Stars are born with a range of rotation rates, which leads to an age range at fixed rotation period. We find that the inherent ambiguity from the initial conditions is important for all young stars, and remains large for old stars below 0.6 solar masses. Latitudinal surface differential rotation also introduces a minimum uncertainty into rotation period measurements and, by extension, rotation-based ages. Both models and the data from binary star systems 61 Cyg and alpha Cen demonstrate that latitudinal differential rotation is the limiting factor for rotation-based age precision among old field stars, inducing uncertainties at the ~2 Gyr level. We also examine the relationship between variability amplitude, rotation period, and age. Existing ground-based surveys can detect field populations with ages as old as 1-2 Gyr, while space missions can detect stars as old as the Galactic disk. In comparison with other techniques for measuring the ages of lower main sequence stars, including geometric parallax and asteroseismology, rotation-based ages have the potential to be the most precise chronometer for 0.6-1.0 solar mass stars.Comment: For a brief video explaining the key results of this paper, see http://www.youtube.com/user/OSUAstronom

    A Bayesian approach to the modelling of alpha Cen A

    Full text link
    Determining the physical characteristics of a star is an inverse problem consisting in estimating the parameters of models for the stellar structure and evolution, knowing certain observable quantities. We use a Bayesian approach to solve this problem for alpha Cen A, which allows us to incorporate prior information on the parameters to be estimated, in order to better constrain the problem. Our strategy is based on the use of a Markov Chain Monte Carlo (MCMC) algorithm to estimate the posterior probability densities of the stellar parameters: mass, age, initial chemical composition,... We use the stellar evolutionary code ASTEC to model the star. To constrain this model both seismic and non-seismic observations were considered. Several different strategies were tested to fit these values, either using two or five free parameters in ASTEC. We are thus able to show evidence that MCMC methods become efficient with respect to more classical grid-based strategies when the number of parameters increases. The results of our MCMC algorithm allow us to derive estimates for the stellar parameters and robust uncertainties thanks to the statistical analysis of the posterior probability densities. We are also able to compute odds for the presence of a convective core in alpha Cen A. When using core-sensitive seismic observational constraints, these can raise above ~40%. The comparison of results to previous studies also indicates that these seismic constraints are of critical importance for our knowledge of the structure of this star.Comment: 21 pages, 6 figures, to be published in MNRA
    corecore