3,458 research outputs found

    Why I Hate Parties

    Full text link

    Excitable media in open and closed chaotic flows

    Get PDF
    We investigate the response of an excitable medium to a localized perturbation in the presence of a two-dimensional smooth chaotic flow. Two distinct types of flows are numerically considered: open and closed. For both of them three distinct regimes are found, depending on the relative strengths of the stirring and the rate of the excitable reaction. In order to clarify and understand the role of the many competing mechanisms present, simplified models of the process are introduced. They are one-dimensional baker-map models for the flow and a one-dimensional approximation for the transverse profile of the filaments.Comment: 14 pages, 16 figure

    Advection in chaotically time-dependent open flows

    Get PDF
    The passive advection of tracer panicles is considered in open two-dimensional incompressible flows with chaotic time dependence. As illustrative examples we investigate flows produced by chaotically moving ideal point vortices. The advection problem can be seen as a chaotic scattering process in a chaotically driven Hamiltonian system. Studying the motion of tracer ensembles, we present numerical evidence for the existence of a bounded chaotic set containing infinitely many aperiodic trajectories never leaving the mixing region of the flow. These ensembles converge to filamental patterns which, however, do not follow self-similar scaling. Nevertheless, they possess a fractal dimension after averaging over several finite-time realizations of the flow. We propose random maps as simple models of the phenomenon

    Chaotic mixing induced transitions in reaction-diffusion systems

    Full text link
    We study the evolution of a localized perturbation in a chemical system with multiple homogeneous steady states, in the presence of stirring by a fluid flow. Two distinct regimes are found as the rate of stirring is varied relative to the rate of the chemical reaction. When the stirring is fast localized perturbations decay towards a spatially homogeneous state. When the stirring is slow (or fast reaction) localized perturbations propagate by advection in form of a filament with a roughly constant width and exponentially increasing length. The width of the filament depends on the stirring rate and reaction rate but is independent of the initial perturbation. We investigate this problem numerically in both closed and open flow systems and explain the results using a one-dimensional "mean-strain" model for the transverse profile of the filament that captures the interplay between the propagation of the reaction-diffusion front and the stretching due to chaotic advection.Comment: to appear in Chaos, special issue on Chaotic Flo

    Homogenization induced by chaotic mixing and diffusion in an oscillatory chemical reaction

    Get PDF
    A model for an imperfectly mixed batch reactor with the chlorine dioxide-iodine-malonic acid (CDIMA) reaction, with the mixing being modelled by chaotic advection, is considered. The reactor is assumed to be operating in oscillatory mode and the way in which an initial spatial perturbation becomes homogenized is examined. When the kinetics are such that the only stable homogeneous state is oscillatory then the perturbation is always entrained into these oscillations. The rate at which this occurs is relatively insensitive to the chemical effects, measured by the Damkohler number, and is comparable to the rate of homogenization of a passive contaminant. When both steady and oscillatory states are stable, spatially homogeneous states, two possibilities can occur. For the smaller Damkohler numbers, a localized perturbation at the steady state is homogenized within the background oscillations. For larger Damkohler numbers, regions of both oscillatory and steady behavior can co-exist for relatively long times before the system collapses to having the steady state everywhere. An interpretation of this behavior is provided by the one-dimensional Lagrangian filament model, which is analyzed in detail

    Chaotic advection of reacting substances: Plankton dynamics on a meandering jet

    Get PDF
    We study the spatial patterns formed by interacting populations or reacting chemicals under the influence of chaotic flows. In particular, we have considered a three-component model of plankton dynamics advected by a meandering jet. We report general results, stressing the existence of a smooth-filamental transition in the concentration patterns depending on the relative strength of the stirring by the chaotic flow and the relaxation properties of planktonic dynamical system. Patterns obtained in open and closed flows are compared.Comment: 5 pages, 3 figues, latex compiled with modegs.cl

    Plankton bloom controlled by horizontal stirring.

    Get PDF
    Here we show a simple mechanism in which changes in the rate of horizontal stirring by mesoscale ocean eddies can trigger or suppress plankton blooms and can lead to an abrupt change in the average plankton density. We consider a single species phytoplankton model with logistic growth, grazing and a spatially non-uniform carrying capacity. The local dynamics have multiple steady states for some values of the carrying capacity that can lead to localized blooms as fluid moves across the regions with different properties. We show that for this model even small changes in the ratio of biological timescales relative to the flow timescales can greatly enhance or reduce the global plankton productivity. Thus, this may be a possible mechanism in which changes in horizontal mixing can trigger plankton blooms or cause regime shifts in some oceanic regions. Comparison between the spatially distributed model and Lagrangian simulations considering temporal fluctuations along fluid trajectories, demonstrates that small scale transport processes also play an important role in the development of plankton blooms with a significant influence on global biomass

    The structure of flame filaments in chaotic flows

    Full text link
    The structure of flame filaments resulting from chaotic mixing within a combustion reaction is considered. The transverse profile of the filaments is investigated numerically and analytically based on a one-dimensional model that represents the effect of stirring as a convergent flow. The dependence of the steady solutions on the Damkohler number and Lewis number is treated in detail. It is found that, below a critical Damkohler number Da(crit), the flame is quenched by the flow. The quenching transition appears as a result of a saddle-node bifurcation where the stable steady filament solution collides with an unstable one. The shape of the steady solutions for the concentration and temperature profiles changes with the Lewis number and the value of Da(crit) increases monotonically with the Lewis number. Properties of the solutions are studied analytically in the limit of large Damkohler number and for small and large Lewis number.Comment: 17 pages, 13 figures, to be published in Physica
    • …
    corecore