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Advection in chaotically time-dependent open flows
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The passive advection of tracer particles is considered in open two-dimensional incompressible flows with
chaotic time dependence. As illustrative examples we investigate flows produced by chaotically moving ideal
point vortices. The advection problem can be seen as a chaotic scattering process in a chaotically driven
Hamiltonian system. Studying the motion of tracer ensembles, we present numerical evidence for the existence
of a bounded chaotic set containing infinitely many aperiodic trajectories never leaving the mixing region of
the flow. These ensembles converge to filamental patterns which, however, do not follow self-similar scaling.
Nevertheless, they possess a fractal dimension after averaging over several finite-time realizations of the flow.
We propose random maps as simple models of the phenomgsbd63-651X98)11202-3

PACS numbgs): 47.10:+9g, 05.45+b, 47.15.Ki, 47.27.Cn

[. INTRODUCTION by understanding such cases, we come a step closer to the
understanding of what passive transport looks like in flows
The passive advection of tracer particles in two-exhibiting two-dimensional turbulend&4,35 in regimes of
dimensional incompressible flows is a chaotic phenomenofinite extents. In the language of point mechanics, such tracer
[1]. In such cases, the tracer dynamics turns out to be areaotions correspond to chaotic scattering processes generated
preserving in the phase space which coincides with the planey chaotic temporal driving.
of the flow and is thus directly observable. The advection in  Studying the motion of tracer ensembles, we present nu-
nonsteady flows is described by driven Hamiltonian dynamimerical evidence for the existence obaunded chaotic set
ics. In the last decade, a comprehensive knowledge has acentaining trajectories never going out to the far upstream or
cumulated in the case of stritiine periodicityboth for flows  downstream region. Although periodic orbits are atypical, an
in closed containerg2-16] and for open flows with infinite number of aperiodic bounded orbits do belong to this
asymptotic simplicityf 17—30, where the velocity field in the set which seems thus to be a direct generalization of a cha-
far up and downstream region is uniform. A unique featureotic saddle. Local Lyapunov exponents on it are found to be
of the latter sort of open flows is the pronounced and stablatrictly positive.
fractal featureassociated with chaotic tracer dynamics. This  Technically, it is easier to follow escape-time functions
is clearly measurable in laboratory experimef@4]. The telling us how the time spent in the mixing region depends
central object governing the tracer dynamics is a nonattracien the tracers’ initial condition&ypically taken along a line
ing chaotic saddI¢32] containing an infinite number of pe- segment This distribution is found to be more irregular than
riodic and aperiodic bounded tracer orbits which never reacin periodic flows, and is not consistent with the assumption
the far up or downstream region. The stable manifold repreef a single escape rate governing exponential decay statistics
sents the saddle’s basin of attraction, and is a set of measuwdth a well-defined exponent. Neverthelesstamge of in-
zero. The unstable manifold leads tracers which have apstantaneous escape ratean be found. The singularities of
proached the saddle in the far downstream region. Both ththe escape-time function belong to the intersection of the line
saddle and its stable and unstable manifolds are fractal olf initial conditions with the stable manifold of the bounded
jects. Since the asymptotic dynamics is simple, the tracechaotic set. We shall call the stable manifold floeward
motion can be considered as a scattering process with all theonescaping foliation
characteristics of a periodically driven one-degree-of- Tracer droplets rapidly evolve an interwovditamental
freedomchaotic scattering 33]. pattern along the unstable manifold of the bounded chaotic
Our aim in this paper is to study how this picture changesset. It will be called thebackward nonescaping foliatiome-
when the velocity field has ehaotictime dependence. We cause this is the set of infinite escape times in the time-
restrict ourselves to flows of asymptotic simplicity further reversed tracer dynamics. It cannot be distinguished by the
on, which implies that the time dependence is relevant in maked eye from the fractal filaments of periodic flows. A
finite region of the plane only, in the so-calledxing region  closer observation, however, reveals that these foliations
Note that this does not mean at all that the flow would beneed not follow exact fractal scaling: the fractal dimension of
turbulent here. In fact, we shall consider four-vortex prob-such filaments might depend on the length scale of observa-
lems as illustrative examples. Nevertheless, we do hope th&bn.
Since the chaotic time dependence of the flow is restricted
to a finite region, its effect is similar to that of a bounded
*Electronic address: neufeld@hercules.elte.hu random noise. Thus in the weak sense of random averages
"Electronic address: tel@poe.elte.hu the escape rate and the fractal dimension become well-
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defined quantities. More generally, clear asymptotic charac
teristics are obtained by averaging over several finite-time | @
realizations of the chaotic flow.

As simple models of the phenomenon, we propopen
random mapswhere some features are more pronouncec ° [
than in the tracer dynamics. We show that the tracer dynam °© BZ=
ics has an asymptotic escape rate and a fractal dimension -0s
the sense of random averadé&$,37,1Q, provided that the -4
driving dynamics has reached a stationary probability distri- 0
bution. Even if this is fulfilled, the convergence towards the
asymptotic values might be quite slow. The recently coinec
concept ofindecomposable continug29] seems to be an 2
appropriate tool for describing the filamental patterns of the
nonescaping foliations observed in chaotic flows.

The paper is organized as follows. In Sec. Il we presen
four-vortex models generating the chaotic flows considerec’ ‘m

w52 EeBabol
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Section lll is devoted to the presentation of numerical resulte 5 @?‘&ﬁ%ﬁ&ﬁ{ﬁ’
obtained for the tracer motion. In Sec. IV explanatory theo- DIZEE o
retical models are discussed, and the paper is closed by e T S s s
short discussioriSec. V. ’ ’ x =

FIG. 1. Trajectories of four ideal vortices with vortex strengths
Il. THE FOUR-VORTEX DYNAMICS (@ I,=T,=1, [3=T,=—1; and(b) Ty=T,=T3=1, [',= - 3.

The equations of motion of interacting ideal point vorticesThese dimensionless vortex strengths are measured in unls of

in incompressible two-dimensional flows can be written inthe dimensional vorticity of vortex 1. The initial positions of the
the canonical forni3s] vortices are (@) X;=X,=X3=X,4=0, y;=0.3, y,=0.075,
y3=—0.07, y,=—-0.2; and (b) X;=X,=X3=x,=0, y;=0.1,

 GH ' 9H y,=0.6,y3=1.0,y,=0.4. The length unik is given in terms of the
Iixi=—, Ly=——, i=12,...N 1) initial coordinates as=5|y,| andl=|ys| in cases(a and (b), re-
3% X spectively. Trajectories are represented in dimensionless units. The
] ] time the system requires to pass through frart@sand (b) is
where{x; ,y;} are the coordinates of vortéxof strengthl’;.  {~0.688 andt~0.4, respectively. Trajectories over longer times
The HamiltonianH appears in the form (t~4.9 andt~4.2) are shown in the insets. These dimensionless
L times are given in units d#/I". Note the asymptotic breakup of the
H({x Ly = — - 21 I\ I, P four-vortex system in two vortex pairs in ca&®.

obtain a locally chaotic and asymptotically steady open flow.

with r; ; denoting the distance between vorti¢esndj. The corresponding vortex trajectories are shown in Fig\. 1

Our aim now, as explained above, is to investigate advecunfortunately, this system is unstable in the sense that it can
tion in a velocity field produced by point vortices moving disintegrate into two vortex pairs moving away in different
chaatically. It can be easily shown that the minimal numberdirections. In other words, the chaotic vortex motion itself is
of vortices necessary for chaotic dynamics is fi2188]. transient. This has been studied in great detail as a chaotic

We are interested in advection in open flows where disscattering process of vortex pair39]. The time on which
tant tracer particles can come close to the point-vortex systhe system breaks up in two pairs strongly depends, however,
tem along a simple path, exhibit complicated motion arounchn the initial conditions. Thus one can choose appropriate
it, and then leave this system along a simple trajectory agaifhitial conditions to make this time long enough for a conve-
(asymptotic simplicity. For such open flows the sum of the njent investigation of the chaotic advection.
vortex strengths has to be zem;(,I';=0). In this case the One can even prevent this breakup by changing the vortex
streamlines far from the vortices are straight lines alongstrengths to keep the vortices close to each other forever. The
which they can be approachdgétor 2I';# 0 the streamlines condition is that the system should not be decomposable into
far from the vortices are closed curves. subsystems of zero resulting vortex strengths. The simplest

Perhaps the simplest flow of asymptotic simplicity is gen-case which satisfies this iE,=I',=I'3=1 andI',=—-3
erated by the so-calleéapfroggingmotion of two identical  [Fig. 1(b)].
point-vortex pairg|Tj|=1,i=1,...,4 [26]. However, due We shall consider these two chaotic four-vortex systems
to the special symmetry of the initial position&;=x,, as illustrative examples of chaotically time-dependent open
Xo=Xz3, Y1=—VY4, andy,=—Vya, i.e., vortices 1 and 2 are flows with asymptotic simplicity. Typical vortex trajectories
mirror images of vortices 3 andAvhich is preserved by the are shown in Fig. 1. The common feature of both dynamics
dynamics, the motion of the vortices is nonchaotic, but periis that the four vortices move chaotically, do not depart from
odic. each other, and move together along a liffdae latter is true

By considering another four-vortex system with the sameonly for a finite period of time in the first example-hus the
set of vortex strengthk,=I",=1, I'35=1",=—1, but with-  motion of the vortices can be seen as a superposition of a
out restricting the initial conditions to a symmetric one, westraight translating motion and a chaotic relative motion
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FIG. 2. Chaotic tracer trajectories in a chaotic flow. Trajectories are shown in a reference frame moving with the average vortex velocity

(zf‘zlki)m. [The flow is generated by the vortex dynamics shown in Fig).1The initial positions of the tracer particles a@® x= 3.5,
y=0.69 and(b) x=3.5,y=0.7 and the time spent in the mixing region is 0.45 and 1.635, respectively.

which, in turn, produces a chaotic velocity field in a confinedthe total stretching rajeas a function of. The average slope
region. From the point of view of particle dynamics, this (see Fig. 3 gives an estimate of the Lyapunov exponent

plays the role of the mixing region. along the reference trajectory.
We can also investigate the evolution of ansembleof
. ADVECTION OF PASSIVE TRACERS tracer particles simulating the evolution of a droplet of dye

injected into the mixing region. Snapshots taken at different

The dynamics of passively advected particles is detertimes (Fig. 4) show that the ensemble tends to produce a
mined by the underlying velocity field and is given by the complicated filamental structure characteristic to chaotic

SUperpOSition of the circular VelOCity flows of Single vortices. mixing and reminiscent to the ones observed in the case of

The streamfunction) for a point-vortex system can be writ- periodic open flows. The latter has been identified with the

ten in the form[38] unstable manifold of the chaotic saddle existing in the mix-
ing region [22,23,26,27,2P An important difference is,
WXy, )= —Z Eln r(t), 3) however, that in contrast to the periodic generation of iden-
T tical lobes, here the emerging patterns continuously change

their form and size due to the chaotic motion of the vortices
wherer;(t) stands for the distance of point,{) from vor-  driving the flow.
texi. The tracer equations of motion follow from the stream-  Using these tracer trajectories we can represent the escape
function ¢ as time, the time spent in the mixing region, for each initial
condition (Fig. 5). We are particularly interested in the sin-
e IP(x,y,1) _ 9Pyt gularities of the escape times, which mean trapping for a
ay ax large, theoretically infinite, time in the mixing region. The
latter was chosen for numerical purposes as a box centered
Note the Hamiltonian character of the dynamical sys¢dm initially at x=y=0 and moving with the average velocity of
The vortices generating the flow in our illustrative ex- the vortex system X;'_,x;)/4. The size of this box was
amples translate as a whole along a line. By introducing &,=1,=4 which is large enough to fulfill the condition that
comoving reference frame, we make the translation of thearticles leaving it will never return to the mixing region
vortices disappear. In thisomovingframe the velocity field again.
ensures that particles are advected towards the mixing region
and then leave it by moving away on asymptotically straight

(4)

lines. Thus the condition for an open flow with asymptotic e 7

simplicity is fulfilled. o5 L e
Similarly to periodic open flows, the advection of passive §

tracers is a chaotic scattering process. Typical trajectories of 20r 4 B

tracer particles in the comoving frame are shown in Fig. 2. < 15 L Qee" 4

As usual, the time spent in the mixing region, the escape R

time, as well as the trajectory itself are sensitively dependent 10 R T

on the initial coordinates of the tracers. 5L s ]
Lyapunov exponents measured along orbits of long es- ot

cape times are clearly positive. The measurements have been 0 ——A L

; . : ) L e 0 02040608 1 121416 1.8
carried out by starting a test particle with an initial condition t

close to that of a reference orbithe initial distance is

=10 °). The test particle departs from the reference orbit  FiG. 3. Stretching number vs timet measuredsee textalong
and whenever their distance becomes larger than a threshalgk trajectory shown in Fig.(B). Dots and diamonds represent re-
value (104), we shift it back to a distancéto the reference suits obtained for two different test particles started at different
orbit, along the line connecting the test and reference parpositions but at the same distance. The slop@4) gives an esti-
ticles. We counted the numbarof such replacements up to mate of the Lyapunov exponent (24 In65). The saturation
timet (in fact, this number is proportional to the logarithm of aroundt=1.6 is due to the escape from the mixing region.
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FIG. 4. Temporal evolution of an ensemble of 160.000 particles initially placed on a square grid of size 0.1 centered St
Snapshots are taken@ t=0, (b) t=0.1,(c) t=0.2,(d) t=0.3,(e) t=0.4, and(f) t=0.5. After a time period of=0.5, there are still 66.869
particles in framgf). The vortex dynamics is the one shown in Figh)1

Figure 5a) shows that there are two qualitatively different particles cannot enter into these cores from outside, they are
sets of initial conditions leading to long escape times. One ofrrelevant for the chaotic scattering process we are interested
them is characterized by compact disk shaped structures sitin.
ated around the vortices. The particles started in this set are The other set of initial conditions with large escape times,
trapped forever in theseortex cores and their trajectories on the contrary, has a complex filamental structure reminis-
cannot be approached by particles coming from outside theent of the fractal stable manifolds of the chaotic saddles
cores. This kind of vortex cores is a generic feature of pointobserved in the case of time-periodic flows. The enlarge-
vortex dynamics, as was pointed out in different papersments[for an example see Fig(#®] illustrate that the com-
[34,35,15,1% The motion of the tracers is regular around theplex patterns are present on all smaller scales. The motion of
chaotically moving vortex centers, being just a slaved chathe particles on these filaments is restricted in the forward
otic motion with zero relative Lyapunov exponent. Sincedynamics to the mixing region forever. Therefore we shall
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FIG. 5. The time spent in the mixing region, the escape time, represented on gray scale as a function of the initial position of 160.000
tracers distributed uniformly in fram@). Brighter points correspond to larger escape times which are distributed in the intehg.2.
(b) Enlargement of a rectangular region of size 0.1 center¢@d,@i75. (c) Dots represent initial conditions whose escape time is larger than
1.2 in the forward dynamics, and thus form an approximant to the forward nonescaping folidtiBrots represent initial positions whose
escape time is larger than 1.2 both in the forward and backward dynamics, and approximate the bounded chaotic set.

call this set thforward nonescaping foliatian obtained by plotting the initial conditions of Fig(&, whose

One can also construct a similar set corresponding to thescape times are larger then 1.2. The filamental structure
time-reversed tracer dynamics starting with the same set a6 somewhat smeared out due to the low spatial density of the
initial conditions. Thisbackward nonescaping foliatiowill initial conditions considered. Since Eg&l) are invariant
exhibit similar patterns. against the transformatiox— —x; t— —t, initial positions

The intersection of these two foliations has the propertywhich are invariant against the transformation —x lead
that trajectories starting from it never leave the mixing re-in the forward and backward dynamics to vortex trajectories
gion either in the forward or in the backward dynamics. It ismirrored along thex<=0 axis. Obviously, this also holds for
thus a natural generalization of the chaotic saddle introducethe advection dynamics. Thus in the case of Fig. 5 the back-
in the periodic case, and we call it tiunded chaotic set ward nonescaping foliation is simply obtained by mirroring
The most important difference in comparison with periodicthe forward nonescaping foliation against theaxis. The
flows is that this chaotic set does not contain periodic orbitsntersection of these foliations, the bounded chaotic set, is
since the driving flow has an inherently nonperiodic characshown in Fig. %d).
ter. It does contain, however, an infinite number of aperiodic There is another possibility for constructing the bounded
bounded orbits. Since nonescaping points in both temporalhaotic set, namely, by monitoring the evolution of a mate-
directions are rather exceptional, we believe that both theial line placed in the mixing region. The algorithm is the
nonescaping foliations and the bounded chaotic set are sefisliowing: (i) let the vortices move forward in time from
of zero measure t=0 to t, >0; (ii) select then a straight materigr dye

We show in Fig. %c) the forward nonescaping foliation line segment in the mixing region and let the vortices move
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FIG. 6. Approximating the forward and backward nonescaping foliations and their intersections by considering the advection of a
material line using the algorithm described in the text. The material line approaching the f¢haakivard foliations (full line in (a), (b)
[dashed line inb)]) was att=t,=0.25 {=t_=—0.25) a vertical line of length 1.5 centered at1.345,0.75). The intersection of these
lines is shown in(c).

backward in time front, to t=0 along the same trajectory. forward nonescaping foliation.
Due to the chaotic dynamics, the line evolves to a compli- For a quantitative characterization one can measure the
catedly winding curve around the vorticgSig. 6(@)]. This  decay of tracer particles in the mixing region. Start with an
results in a rapid increase of the length, thus the numericaénsemble ofN, particles and monitor the numbéi(t) of
integration requires more and more interpolating pointsparticles staying still inside after some long enough time
Therefore this numerical experiment can only be performedn the case of periodic flows there is an exponential decay
for a relatively short period of timé, . Nevertheless the N(t)/Ng~exp(—«t) characterized by the escape rateln
nonescaping points of the winding curve are expected to apur case the decay is found to be nonunifdffig. 8 which
proach the forward nonescaping foliationtas—e. We can  means that the escape rate is time dependent. This is again a
obtain points on the other nonescaping foliation by perform-natural consequence of the chaotic driving of the flow.
ing the same procedure but changing the direction of time in  One can also observe a nonuniformity of the point density
(i) and(ii), and replacing . by at_<0. The intersection of on the value of the escape tinfef. Fig. 7). This can be
the two images of the advected material line converges, asxplained as an effect due to the sharp edge of the mixing
the advection times, andt_ go to infinity, to the bounded region. When a lobe of the droplet ensemble crosses the left
chaotic set. For simplicity, we can exploit again the abovesdge, there are several initial conditions belonging to nearly
mentioned symmetry of Eq$l). Thus the patterns of the the same value of the escape time. For periodic vortex mo-
material lines in the two cases are mirrored images of eactions, the density differences follow a periodic pattern along
other against they axis. The intersectiofFigs. b) and the escape-time axis, but now we find a rather irregular den-
6(c)], although obtained from a rather short time evolution ofsity oscillation.
the material lines, shows a structure resembling a double The variation in escape rates implies a nonuniform scaling
Cantor set, and approximates the bounded chaotic set. of the geometry as well. The fractal properties of the singu-
Although the measurement of Fig. 5 provides us with alarities of the escape-time function were investigated by the
nice picture of the distribution of escape times in space, itbox-counting method. A typical result displayed in Figa)9
resolution is rather weak. To obtain a higher resolution of theshows that the slope on the Idlfe) vs loge plot is not
singularities, we followed tracer particles started along a lineconstant. No uniquely defined fractal dimension exists, as
segment among the vortices and measured the times the paan be expected from the variations of the driving present at
ticles needed to leave the mixing region. Typical results ofthis scale. In other trials we also found rather accurate scal-
such escape-time functions are shown in Fig. 7. This funcing from intermediate to small scalg¢see Fig. #)]. This
tion wildly fluctuates in some regions and has a fine structurean be viewed as an effect of the efficient mixing of the
of singularities on all scales. This set of singularities corre-different modes present at different scales. The slopes of Fig.
sponds to the intersection of the initial line segment with thed(b) and Fig. &b) (0.95 and 1.8 give an estimate of the
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FIG. 7. Escape timesvs initial coordinates/, of 100.000 tracer particles. The vortex dynamics corresponds) iand (b) to the one
represented in Fig.(&) and Fig. 1b), respectively. The particles were started on a vertical line segment centé®ed &) and(0,0.75 (b).

fractal dimension d=~0.95 and escape rate map (or the set of its parametgrss randomly taken with

x~1.3 In 10=3.0. This value of the fractal dimension is in respect to a stationary distribution from an ensemble. Such
good agreement with the formulde1— /A ~0.945[40]. random maps have originally been proposed to understand
(The average Lyapunov exponentis approximated by the surface advection generated by temporally chaotic flows in

slope of the curve presented in Fig.\3=55.) closed containerf36,37,41,42 The tracer dynamics is then
not area conserving due to up and down welling. These maps
IV. RANDOM BAKER MAP MODELS turned out to be efficient models whose predictions can be

Observing the motion of a particle advected by a c:haoticCompareOI with expenment_al obs_ervat|c[|1$),4?§|. .
In the case of the flows investigated here, the preservation

flow at timest=nr, i.e., at integer multiples of a time lag f th litative feat ) d by th ( f
defines a sequence of stroboscopic maps connecting the co- € qualitalive features Is ensured by the compactness o

ordinates at=nr with those att=(n+1). In contrast to the configuration of the four vor.tice.s maintained in a comov-
periodic flows, when the map is independent, it does de- "9 frgme. Thergfore the velqcny field can be conS|dereq at
pend now on the time at which the snapshot is taken. Thu&nY time as a distorted version of that of two leapfrogging
following a trajectory in discrete times requires the applica-Vortex pairs. The random appearance of the flow field can be
tion of a sequence of different maps. The actual form ofviewed as a consequence of a projection from the high-
these maps is not known in genesapriori. If, however, the —dimensional vortex phase space onto a number, the value of
flow preserves some qualitative featufes drastic changes the streamfunction at pointx(y), expressed by Eq(3)

in the flow structurg the map can be assumed to be an(where the phase space coordinates appear ia
element of a restricted class of maps. Such a class, e.g., cas 1, ..., 4. If the time lag7 is of the order of the dimen-
have a given type of dynamics in which only the parametersionless time unit, the series @f,(x,y)=#(X,y,n7), or its

aren dependent. For sufficiently complex chaotic flows andspatial derivatives which drive the advection process, can be
not very short time lags, the dependence might be so ir- well represented by a random sequence. The new feature in
regular that subsequent maps correspond to more or less inemparison with previous random map models is that we are
dependent choices. This means that on each iteratdhe  studying now open incompressible flows, and therefore area

100000 ¢ 100000 ¢
10000 | i
E 10000 |
£ 1000 g
s 1000
100 |
10 [ 1 1 Il 1 100 1 1 1 ] i 1
0 0.5 1 1.5 2 2.5 0o 05 1 15 2 25 3 35
t t

FIG. 8. The numbeN(t) of particles with escape times larger tharepresented as a function bf(a) and(b) correspond to Figs.(@)
and 7b), respectively. A rough estimate of an average escape rate can be read off from the average slepkd% 10=3.34(a) and
k~1.31n10=3.0 (b).



57 ADVECTION IN CHAOTICALLY TIME-DEPENDENT . .. 2839

n
(8]
1

/
&
y
1

—_
[&)]
]
E
/
1

10g+0 (N(€))

o
[8;]
T

;
b4
!

0 ] 1 1 1 i 1 1 ] S 1
-5-45 -4 -35-3-25-2-15-1-050
10g40(€)

3 - \Q =
25 *, .

2 Y . FIG. 10. Schematic representation of an open baker (sep

®, text).
1.5 & 1 )

logio (N(€))

Tr R 7 the same as in the deterministic versigine topological en-
0.5 & tropy is In 2, no exact self-similar scaling can be found in
o o the length scales. A good numerical approximant to the exact
5 -45 -4 -35 -3 25 -2 -15 -1 -05 0 foliation is obtained aften= 14 steps. The process illustrates
logso(e) that an ensemble of particlésoints on the unit squareub-
o ) jected to the same noise realization generates a nice foliation,
FIG. 9. The numbeN(s) of boxes of size in a box-counting  hile individual trajectories would trace out a fuzzy pattern
algorithm applied to the set of the initial positions on the line Seg-only.
ments shown in Fig_. 7. whose escape times are longer thaf@0.9 By applying a box-counting method along the horizontal
and 1.4(b), respectively. Two local slope@~0.7 andd~0.85 i action, one can find that the local slope fluctuates on the
can be read off ina), while in (b) a well-defined slope gives an In N(¢) vs Ins plot. One can also plot the time dependence
estimate of the fractal dimension of the bounded chaotic(aet of the total area 01.‘ the strips inside the unit squamenum-
d=0.95. . . o
9 ber of particlesN,)) on a logarithmic-linear scale. Fluctua-
. , ., .tions of the local slope of the IN, vs n curve appear again
preserving open random maps are needed with the pOSS|b|I|té(S an effect of the rra)andomne(s{srg Figs. 11 1?l?pHere \?ve

of escape. ;
' . illustrate, by elementary arguments, that although the fluc-
In this class, perhaps, baker maps are the simplest ex- y y arg 9

amples[32]. The simplest deterministic version acts on the

unit square by cutting it into two identical horizontal pieces. 0 T T T T T
These strips are squeezed horizontally and stretched verti- “7:}\

cally so that they become rectangles of s1z¢1/(2a). They SN i
are then overlapped with the original square by keeping the

two corners fixed(Fig. 10. A repetition of this procedure S 0t RN i
leads aften steps to 2 strips of widthsa" inside the square. ZC \

The squeezing and stretching rates in this process aed %C, 15 | A i
1/a, respectively, independently of the construction step. In -
the asymptotic limit this results in a set of fractal lines of
dimensionD =1+d where the partial dimensiod is given 20 | S
by d=In 2/In(1/a). The escape rate characterizing the expo-

nential decay of the total area of the strips inside the unit -25 —

square is simply given by = —In(2a). n
Let us now consider eandomgeneralization of this pro-
cess. We make the contraction rates fluctuating by choosing

the squeezing rate in stépto be aj=a+ 5 with & as @  qare starting with a uniform distribution dfl, particles(which is
random variable in the randej|<A with A<a fixed. We  ,rop0rtional to the total area of the strigss a function of timen.
assume that thé;’s have astationarydistribution. The area Nma=14 steps were performed with=a+ 6, wherea=0.25 and
preservation implies that the expansion rate at ste8 s is uniformly distributed in the interval—0.2,0.3. The results
(a;) 1. After n steps, we then have"2strips of widths  for three different realizations are shown. A well-defined slope will
I17_,a; inside the square. Although the number of strips isarise after averaging over a great number of realizations.

FIG. 11. The total numbeN, of particles (inside the unit
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FIG. 12. Numbem(e) of boxes of sizes needed to cover the

projection on the horizontal axis of the strips obtained by a repeti

tion of the random baker map aftap,,,=14 steps, for three real-
izations of the random sequenée A well-defined slope will arise

after averaging over a great number of realizations. Parameters as in

Fig. 11.

tuations are large, a well-defined asymptotic fractal dimen-

siond and escape rate exists. This is an extension of the
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vertical direction. The distance between them along the
y=In N(g) axis isAy;=In,p2=Ay. These jumps are, how-
ever, distributed unevenlyFig. 12 along the horizontal
x=In g axis where the distance between successive points is

Ax;=In(1/a;). The resulting slope of the IN vs Ine curve
is = Ay; /= Ax; from which

n

1 1 Ax; 1 In(1/a;) 1
g-im 52 Ry im0 S _<d_i>
3 (In a;)
- In2 "

This shows that the fractal dimension is equal to the har-
monic mean of the local dimensionsl;=In 2/In(1/a;),

which would be the global dimension & was kept inde-
pendent ofi.

By taking into account that(In &) is the average loga-
rithm of the stretching rate, i.e., the average Lyapunov expo-
nent, we find thatl=1— «/\ holds in this case exactly.

These results can be generalized for the case of nonhomo-
geneous random baker maps having two different stretching

results obtained for the attractors of dissipative and closeéftesa; andb; for the two halves of the unit square. In the

random map$36,37,1Q.

deterministic case the partial fractal dimension of the result-

Let us first investigate the escape rate. We introduce aild nhonuniform fractal is given by the implicit equation

instantaneous escape ratesgs —In(2a) corresponding to
the ith iteration. This would be the value of if a; were
independent of. We define the asymptotic escape rate as

In(N,/Ng)
K=—1m T,

n—oo

whereN,, is the number of particles on the square after
steps when starting with a uniform distribution Nf, par-
ticles. SinceN,/No=2"II"_,a;, the average slope of the
In N, vs n curve can be written as—=!"_, In(2a)]/n. Note
that forn— o this yieldsk=(;), that is, the average escape

rate is simply the average of the instantaneous escape ra
(cf. Fig. 11). Note that the average can also be taken over th

t

a’+b%=1 [44-46. If a andb are random variables, one
can obtain a successively better and better approximation
to the random map’'s average behavior by applying a
sequence of random parameters of lengthk:
(a1,bq),(az,by), ... ,(ak,by), and repeating this sequence
periodically up to infinity. Afterk=2 applications of the
random map, the widths of the four strips ag,, a;b,,
b,a,, andb;b,. The escape rate, over this short period

is ko= (1/2)In(a;a,+asby,+bias,+biby)=(1/2)[ In(a; +by)
+In(a,+b,)]. The periodic repetition of this action does not
change the escape rate at all, and leads to the construction of
a four-scale Cantor set along the horizontal axis. Its fractal

Ei,amension is known to be given by the equatiphd]

a,a,) %2+ (a;b,) %2+ (bja,) %+ (b;b,)%2=1 which can be

& oty vd - :
random process; brackets will be used to denote such avefieWwritten as &;°+b,?)(a,*+b,?) =1. Similarly, for a peri-

ages. Finally we obtain

k=(ki)=—In2—{In &),

i.e., the average of the contraction rates’ logarithm deter:

mines the escape rate.

The situation is somewhat different for the fractal dimen-

sion defined as

In N(¢g)

d=—Ilim
Ine

e—0

whereN(e) is the number of boxes of sizeneeded to cover

odic application of a random sequence of lengtive find
the escape ratec, and partial fractal dimensiord, as
k= (1K) =K_, In(a+b;), and Hik=1(a?k+ b?k)=l, respec-
tively. The latter can also be written §:$‘=l In(af'k+ b?k)zo.
In the limit k—o~ we obtain the escape rateand patrtial

fractal dimensiord of the random map as
k={In(a;+b;))

and

(In(af'+bf)) =0,

the projection of the foliation on the horizontal axis. Let us

consider a box-counting algorithm by choosing a sequenceespectively. Since the orddr approximants contain alge-

of box sizes,, n=1,2, . . . coinciding with the width of the  braic means of certain combinations of the random param-
strips aftern iterations:e,=1II]_,a;. Since the number of eters, the asymptotic expression appears as mean values
strips is increased by a factor of 2 in each step, the number déken over the noise realizations. We see again that well-
nonempty boxes is 2in stepn. Thus we obtain a set of defined dynamical and fractal characteristics exist in open
points on the INN vs In g plot which are equidistant along the random maps.
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The above results can be obtained in a more general seh the weak sense of random averages. The crossover be-
ting by using the partition function formalisfi87]. In this  tween two more or less linear scaling regimes around
way, the entire spectrum of the unstable foliation’s generallog,q e~ —2.5 in Fig. 9a) can be viewed as a consequence

ized dimension$44,45 can also be determined. of nonstationarity. The vortex trajectories show the succes-
sion of two different but more or less periodic vortex mo-
V. DISCUSSION tions on the time scales which are relevant for this measure-

i ) i ment. The crossover takes place arowrd6.5 in Fig. Xa).
First, let us discuss the relation of the random map apTpys the two scaling regimes in spatial scales can be consid-
proach to chaotically driven advection. We have seen thakeq as fingerprints of these two temporal dynamics.
open randqm maps possess we]l-deﬁned asymptotic escapeRecently, the concept of indecomposable contifi2@
rates and, in spite of their Hamiltonian or area preservingyas introduced and suggested as a useful tool for describing
character, also fractal dlmgnS|ons. The examples C|ear,|]z5assive advection in open flows. Roughly speaking, an inde-
demonstrate, however, the difference between the determiliymposable continuum is a complicated line that falls into an
istic and random versions. While the exact results for usughfinite number of pieces when being cut through by a
baker maps can be read off after one step already, they agyrajght line. This topological property does not imply fractal
pear as statistical averages with a fype of convergence in  gscajing at all but ensures a geometrical appearance resem-
random baker maps. This difference remains of course prosjing that of fractal manifolds. The forward and backward
nounced in more general maps, t0o, in the form of a muctygnescaping foliations defined in the paper are examples of
slower convergence in the random version than in the detefngecomposable continua. As pointed out, they really do not
ministic one. _ o follow strict fractal scaling but might be characterized by
_ The effect of noise and chaotic driving is expected to beye||-defined asymptotic fractal dimensions and escape rates
similar for the properties we are studying. Some difference$, the sense of open random maps.
of course can be pointed out with suitable tailored time series Note addedAfter the submission of this manuscript, we
analysis methodp47] but this is not of primary interest for pecame aware of other recent independent approaches
us in this paper. We can state that the escaping process a[’;gg_53 devoted to understanding advection in aperiodic
the tracer foliations in chaotically driven flows are of similar fiows. In [49] temporally irregular flows are considered. The
character as in open randofHamiltoniar) maps. This ex- gitference with our paper is that the advection problem in-
plains the rather large fluctuations of the time decay found iRsestigated is represented there from the very beginning in the
the preceding section since the time interval studied therg; m of a random map. Nevertheless the existence of a for-
was yet too short to cover a sampling period where a wellyyard (hackward foliation and a bounded chaotic s@thich
defined average for the escape rate could be obtained. Thge called entrainment, pre-entrainment, and intermediate en-
range ofs used in the box-counting algorithm was much yrainment sets, respectivelis shown, and the corresponding
broader, which supports the better scaling found in theyots of these sets are qualitatively similar to those presented
In N(e) vs & plots. . here. The conclusions concerning fractal properties is also
We do not claim that the simple random baker map studsjmilar. Referencd49] contains a detailed study on multi-
ied in Sec. IV would be an appropriate model of advection infracta"ty' too. Paper§50-53 deal with flows of general
the field of chaotically moving vortices in a quantitative tjme dependence. Rigorous mathematical conditions are
sense. Our aim was to show that the existence of a@orked out for the existence of hyperbolic structures and
asymptotic escape rate or a fractal dimensjon is alsg presehaotic sets. IM51] the technique of lobe dynamics and
in open random maps. Therefore we believe that in suffiyje|nikov’s method are generalized for aperiodic flows. In
ciently chaotic flows the long term tracer dynamics can besystems with chaotic advection, the above methods and the
well modeled by random maps. To find their particular formzndom map approach seem to be complementary: they pro-

seems to be rather difficult in practice. Nevertheless, theifjde tools for understanding the short and long time behav-
mere existence is important since it ensures the validity ofgr, respectively.

Kaplan-Yorke type formula$48] (such as, e.g., a relation

d=1—«/\ Connecting fractality with escape rate an_d ACKNOWLEDGMENTS
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