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We study the dynamics of two-phase flows injected into a confined porous layer. A model10

is derived to describe the evolution of the fluid-fluid interface, where the effective satura-11

tion of the injected fluid is zero, as the flow is driven by pressure gradients of injection,12

the buoyancy due to density contrasts and the interfacial tension between the injected13

and ambient fluids. The saturation field is then computed once the interface evolution14

is obtained. The results demonstrate that the flow behaviour evolves from early-time15

unconfined to late-time confined behaviours. In particular, at early times, the influence16

of capillary forces drive fluid flow and produce a new self-similar spreading behaviour in17

the unconfined limit, distinct from the gravity current solution. At late times, we obtain18

two new similarity solutions, a modified shock and a compound wave, in addition to the19

rarefaction and shock solutions in the sharp-interface limit. A schematic regime diagram20

is also provided, which summarizes all possible similarity solutions and the time transi-21

tions between them for the partially saturating flows resulting from fluid injection into22

a confined porous layer. Three dimensionless control parameters are identified and their23

influence on the fluid flow is also discussed, including the viscosity ratio, the pore-size24

distribution and the relative contributions of capillary and buoyancy forces. To underline25

the relevance of our results, we also briefly describe the implications of the two-phase26

flow model to the geological storage of CO2, using representative geological parameters27

from the Sleipner and In Salah sites.28
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1. Introduction30

The flow of two fluid phases within a porous medium occurs in many environmen-31

tal, geophysical and industrial processes including the motion of groundwater in porous32

aquifers (e.g., Bear 1972), the production of natural resources in subsurface reservoirs33

(e.g., Lake 1989), the storage of liquid waste in deep porous reservoirs, and the sequestra-34

tion of CO2 in geological formations (e.g., Huppert & Neufeld 2014). The flow behaviour35

can be complicated, given that it can be driven by forces including the background pres-36

sure gradient from fluid injection, buoyancy and capillary forces. It is of fundamental37

and practical interests to understand the role of these different driving forces at different38

time and length scales.39
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Many previous studies focus on the case where a sharp, or distinct, interface can be40

identified between the injected and displaced fluids. Such a flow situation exists when41

the capillary forces and mixing between the two fluids are negligible. For example, previ-42

ous research has been conducted to investigate the fluid motion and interface dynamics43

during fluid injection in both unconfined and confined porous media (e.g., Huppert &44

Woods 1995; Lyle et al. 2005; Nordbotten & Celia 2006; Pegler et al. 2014; Zheng et al.45

2015a; Guo et al. 2016b). In addition, motivated by the application of geological CO246

sequestration, more recent work has focused on the effects of slow drainage or leakage47

systematically, including fluid drainage from a permeable caprock (e.g., Acton et al. 2001;48

Pritchard et al. 2001; Woods & Farcas 2009; Zheng et al. 2015c; Liu et al. 2017), a finite49

edge (Hesse & Woods 2010; Zheng et al. 2013; Yu et al. 2017), geological faults or leaky50

wells (e.g., Gasda et al. 2004; Neufeld et al. 2009, 2011; Vella et al. 2011)..51

Capillary forces can significantly modify the behaviour of multi-phase flows in at least52

three ways. First, the immiscible fluids may each partially fill the pore space, hence53

the partial saturation must be tracked and an effective relative permeability determined54

which characterises the flow of one fluid past another (e.g., Buckley & Leverett 1942;55

LeVeque 2002). Second, the capillary pressure jump between the injected and displaced56

fluids can also drive fluid flow, in flows driven by buoyancy and pressure gradients asso-57

ciated with fluid injection (e.g., de Gennes et al. 2004). Third, a fraction of the wetting58

phase can remain trapped within the solid matrix during fluid displacement, which re-59

sults in an irreducible saturation of the wetting fluid (e.g., Hesse et al. 2008; Farcas &60

Woods 2009; MacMinn et al. 2010).61

A series of previous studies have considered the effects of residual trapping in a porous62

medium by assuming that a constant fraction of the wetting fluid is trapped during the63

fluid flow, which indicates a reduction in the effective porosity in the sharp-interface64

models. For example, a modified sharp-interface model has been proposed and a self-65

similar solution of the second kind is obtained to describe the dynamics of groundwater66

slumping in an aquifer with residual trapping at a constant rate (Kochina et al. 1983).67

In the context of geological CO2 storage, similar models have been proposed to describe68

how much and how fast is CO2 trapped after being injected into a saline aquifer (e.g.,69

Hesse et al. 2008; Farcas & Woods 2009; Juanes et al. 2010; MacMinn et al. 2010, 2011).70

However, these modified, sharp-interface models only consider a constant saturation and71

do not take into account the relative permeability experienced by each fluid phase, nor72

the possibility that the capillary pressure between phases may drive fluid flow.73

To account more accurately for the effects of capillary forces, two-phase gravity cur-74

rent models have been developed for flows that partially saturates an unconfined porous75

medium, including the saturation-dependent capillary pressure, relative permeabilities76

and residual trapping (e.g., Gasda et al. 2009; Golding et al. 2011, 2013, 2017). Inspired77

by the practice of geological CO2 sequestration, these studies have focused on the steady-78

state flows generated from coupling fluid injection and edge drainage (Golding et al.79

2011), radial spreading from vertical well injection (Golding et al. 2013), and horizontal80

propagation from an instantaneous release of a finite volume of fluid behind a lock gate81

(Golding et al. 2017). In all these studies a vertical capillary-gravity balance is assumed,82

and the time scale over which this balance is attained quantified (Golding et al. 2011;83

Nordbotten & Dahle 2011). The influence of confinement on the dynamical evolution has84

only been examined chiefly for sharp-interface, single phase (i.e., immiscible) currents.85

These studies identified a transition from an early-time, unconfined self-similar behaviour86

to three different branches of late-time confined self-similar behaviours, depending on the87

viscosity ratio of the two fluids (Pegler et al. 2014; Zheng et al. 2015a). Numerical models88

of two-phase flows in confined layers have also recently been formulated, computing either89
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the mean saturation (integrated over the reservoir depth, Nordbotten & Dahle 2011) or90

the the two-phase, fluid-fluid interface (Nilsen et al. 2016). These studies demonstrated91

the utility of the confined, two-phase formulation, by focusing on model development92

illustrated by industrially-relevant case studies.93

Here we focus instead on the dynamical regimes present during the injection of a two-94

phase flow into a confined porous layer. In this paper, we first describe a theoretical95

model in §2 for two phase flows due to fluid injection into a confined porous layer.96

Then, in §3, we provide an example calculation, employing a specific set of capillary97

pressure and relative permeability curves taken from a geological CO2 sequestration98

project, and derive the early-time and late-time self-similar asymptotic solutions for the99

evolution of the interface shape. In §4, we perform a detailed numerical calculation for100

the governing partial differential equation, and compare the results of direct numerical101

simulations with the self-similar solutions we derived in §3 in various asymptotic limits.102

A schematic regime diagram is provided in §5, which summarizes the dynamic evolution103

of the partially saturating flows; the influence of different control parameters on the104

self-similar solutions in the regime schematic is also addressed. Finally, in §6 we briefly105

discuss the possible implications of the current model to the geological CO2 sequestration106

projects, employing representative geological parameters from the Sleipner and In Salah107

sites.108

2. Theoretical model109

2.1. Two-phase flows in porous media110

We consider a two-phase flow of non-wetting fluid injected into a homogeneous and
isotropic porous medium of porosity φ and permeability k, initially fully saturated by a
wetting fluid. The volume fraction of the non-wetting and wetting fluids in a represen-
tative elementary volume (REV) is φn and φw, respectively, while the saturation of the
two fluids is

Sn = φn/φ and Sw = φw/φ. (2.1a, b)

Treating the flow of both fluids and the solid matrix as incompressible, mass conservation111

within the pore space therefore dictates that112

Sn + Sw = 1. (2.2)

Because of capillary effects, there is often an irreducible fraction (or saturation) of the
wetting fluid left in the porous medium, Swi. We define the effective non-wetting phase
saturation and effective wetting phase saturation as

s ≡ Sn
1− Swi

and 1− s =
Sw − Swi
1− Swi

, (2.3a, b)

respectively, corresponding to the empirical behaviours of partially saturating flows (e.g.,113

Leverett 1941; Brooks & Corey 1964; Bennion & Bachu 2005). We note that in general,114

the effective non-wetting saturation s(x, t) depends on space x and time t.115

We use standard empirical models for the capillary pressure, pc, which relates the116

pressure in the nonwetting and wetting fluid phases, pn and pw, to the local saturation,117

pn − pw = pc(s). (2.4)

Here we use the Brooks-Corey model (Brooks & Corey 1964) which assumes a particularly118

convenient power-law form119

pc(s) = pe(1− s)−1/Λ, (2.5)
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Figure 1. Capillary pressure in (a) and relative permeability curves in (b). The symbols in (b)
are representative values of relative permeabilities taken from a CO2 geological sequestration
projects (e.g., Bennion & Bachu 2005; Li & Horne 2006), and the curves represent best power-law
fitting results in (2.7) with krn0 = 0.116 and α = β = 2 (Bennion & Bachu 2005; Golding et al.
2011).

where pe is the capillary entry pressure, and Λ is a fitting parameter that characterizes120

the pore-size distribution of the porous medium. Smaller values of Λ correspond to a121

wider distribution of pore sizes of the porous medium, and Λ → ∞ is the limiting case122

of monodisperse pores, as shown in figure 1a.123

To compute the volumetric flux for the non-wetting (un) and wetting (uw) phases,
we use a standard multiphase extension of Darcy’s law (e.g., Leverett 1941; Bear 1972;
Phillips 1991)

un = −kkrn
µn

(∇pn − ρng) , (2.6a)

uw = −kkrw
µw

(∇pw − ρwg) , (2.6b)

where µn and µw are the viscosity of the non-wetting and wetting fluids respectively, and
krn(s) and krw(s) are the (dimensionless) relative permeabilities of the non-wetting and
wetting phases, which we assume to be solely a function of the saturation,

krn(s) = krn0s
α, (2.7a)

krw(s) = (1− s)β . (2.7b)

Here krn0 is the end-point relative permeability of the non-wetting phase, and α and β124

are fitting parameters (e.g., Bennion & Bachu 2005; Li & Horne 2006; Golding et al. 2011,125

2013). A representative set of values, applied previously in the context of geological CO2126
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Figure 2. Schematic of the injection of a non-wetting fluid into a confined porous layer initially
saturated with a wetting fluid: (a) shows the saturation field of the injected fluid; (b) illustrates
that the interface h(x, t) is defined as the location where the effective saturation of the injected
non-wetting fluid s(x, z, t) = 0, and xf (t) denotes the location of the propagating front.

sequestration, is krn0 = 0.116 and α = β = 2 (Bennion & Bachu 2005; Golding et al.127

2011), as shown in figure 1b.128

2.2. Confined, two-phase gravity currents129

We now consider the propagation of a two-phase gravity current in a confined homo-130

geneous porous layer of constant and uniform porosity φ, intrinsic permeability k, and131

bounded by impermeable horizontal boundaries at z = 0 and h0, as shown in figure 2.132

A non-wetting fluid of density ρn is injected at (x, z) = (0, 0), and displaces the wet-133

ting fluid of density ρw ( both fluid phases are assumed incompressible). Without loss of134

generality, we assume that the injected fluid is more dense than the displaced fluid, i.e.,135

∆ρ = ρn−ρw > 0, but note that the dynamics are identical for ∆ρ < 0 when the current136

propagates along the top of the confined layer. The interface is located at z = h(x, t),137

where the effective saturation of the non-wetting phase s becomes zero, and is a function138

of the horizontal coordinate x and time t. According to (2.5), the pressure jump at the139

interface is the capillary entry pressure pe.140

We assume that the current is long and thin, and hence the flow is mainly horizontal,
and the pressure in both phases is approximately hydrostatic,

pn(x, z, t) = p0(x, t)− ρngz, 0 6 z 6 h(x, t), (2.8a)

pw(x, z, t) = p0(x, t)− ρngh(x, t)− ρwg[z − h(x, t)]− pe, 0 6 z 6 h0, (2.8b)

where p0(x, t) is the pressure distribution of the injected fluid along the bottom boundary.141

We also note that, compared with the sharp interface models described in Pegler et al.142

(2014) and Zheng et al. (2015a), the capillary entry pressure, pe, now appears in the143

pressure distribution (2.8b), which represents the pressure jump due to capillary effects at144

the fluid-fluid interface h(x, t). The saturation may therefore be inferred from (2.4), (2.5)145

and (2.8) in a manner consistent with the gravity-capillary balance detailed previously146
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(the speed at which gravity-capillary equilibrium is reached is rapid for high aspect ratio147

currents, see, e.g., Golding et al. 2011; Nordbotten & Dahle 2011),148

s =

{
1−

(
1 + h−z

he

)−Λ

, 0 6 z 6 h(x, t),

0, h(x, t) 6 z 6 h0,
(2.9)

where he ≡ pe/∆ρg is the characteristic height of the capillary fringe. We note that149

s(x, z, t) = s[h(x, t), z], so that the dependence of the saturation on x and t is now150

included in the information of the interface shape h(x, t).151

The horizontal velocities within the non-wetting and wetting phases are

un(x, z, t) = −kkrn(s)

µn

∂pn(x, z, t)

∂x
, (2.10a)

uw(x, z, t) = −kkrw(s)

µw

∂pw(x, z, t)

∂x
, (2.10b)

respectively, where we assume that the relative permeability functions krn(s) and krw(s)152

depend only on the saturation field s = s[h(x, t), z], given by (2.9).153

In addition, the non-wetting fluid is injected at a constant volumetric rate q, and hence154

at each location mass conservation requires155

q =

∫ h(x,t)

0

un(x, z, t)dz +

∫ h0

0

uw(x, z, t)dz, (2.11)

where we note that the non-wetting phase only exists between 0 6 z 6 h(x, t), while the156

wetting phase occupies the entire layer 0 6 z 6 h0. This local mass conservation may157

be used to infer the background pressure gradient ∂p0/∂x. Substituting (2.8) into (2.10),158

and then (2.10) into (2.11), we obtain159

∂p0

∂x
(x, t) =

∆ρgIw(h)

MIn(h) + Iw(h)

∂h

∂x
− qµw/k

MIn(h) + Iw(h)
, (2.12)

where M ≡ µw/µn is the viscosity ratio of the displaced (wetting) fluid over the in-
jected (non-wetting) fluid. Here Iw(h) and In(h) are the vertically integrated relative
permeability functions, defined as

Iw(h) ≡
∫ h0

0

krw(s)dz, (2.13a)

In(h) ≡
∫ h(x,t)

0

krn(s)dz, (2.13b)

and the saturation function s[h(x, t), z] is provided by (2.9). By substituting (2.12) into160

(2.10a,b), the velocity fields un(x, z, t) and uw(x, z, t) can be computed as the interface161

h(x, t) evolves.162

Local continuity of the injected non-wetting fluid states that163

∂

∂t

∫ h(x,t)

0

φn(x, z, t)dz +
∂

∂x

∫ h(x,t)

0

un(x, z, t)dz = 0. (2.14)

We note that φn(x, z, t) = φ(1− Swi)s[h(x, t), z], and we define the vertically-integrated164

saturation function as165

Is(h) ≡
∫ h(x,t)

0

s[h(x, t), z]dz = h+
he

1− Λ

[
1−

(
1 +

h

he

)1−Λ
]
, (2.15)
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where we have used the expression (2.9) for the effective saturation s[h(x, t), z]. Using166

(2.15), (2.10a) and (2.14), we obtain the evolution equation for the interface shape h(x, t)167

for a two-phase gravity current in a confined porous layer,168

φ(1− Swi)
∂Is(h)

∂t
+ q

∂

∂x

[
MIn(h)

MIn(h) + Iw(h)

]
− ∆ρgk

µn

∂

∂x

[
In(h)Iw(h)

MIn(h) + Iw(h)

∂h

∂x

]
= 0,

(2.16)
where the integrated saturations are given by (2.13a,b) and (2.15). We provide the ap-169

propriate initial and boundary conditions in §2.2.1 to complete the problem.170

2.2.1. Boundary conditions and the initial fluid distribution171

We assume that the medium is initially completely saturated with ambient fluid and172

that injection starts at time t = 0. Thus, initially the saturation s(x, 0) = 0 and so173

h(x, 0) = 0. (2.17)

At all times we define the front of the current by174

h[xf (t), t] = 0. (2.18)

In addition, we assume that there is no flux through the nose of the current,175

In(h)
∂h

∂x

∣∣∣∣
x=xf (t)

= 0. (2.19)

Equation (2.18) is used to determine xf (t), given that h(+∞, t) = 0. A global statement176

of conservation of injected fluid gives177

φ(1− Swi)
∫ xf (t)

0

Is(h)dx = qt, (2.20)

which, using (2.16) and (2.18), may be reformulated in terms of the flux of non-wetting178

fluid at the origin,179 [
qMIn(h)

MIn(h) + Iw(h)
− ∆ρgk

µn

In(h)Iw(h)

MIn(h) + Iw(h)

∂h

∂x

] ∣∣∣∣
0

= q. (2.21)

Note that we have assumed that there is no-entrainment of ambient fluid (2.19), which180

has also been employed to derive the sharp-interface models (e.g., Zheng et al. 2015a).181

The evolution equation, (2.16), is subject to the initial condition (2.17) and boundary182

conditions (2.18) and (2.21). Given the relative permeability functions kn(s) and kw(s),183

the integrals In(h) and Iw(h) can be evaluated according to (2.13), and the corresponding184

revised form of the evolution equation (2.16) can be obtained. Analytical and numerical185

tools can then be employed to solve for the evolution of the interface shape, h(x, t), and186

the saturation distribution, s[h(x, t), z], using (2.9).187

2.3. Limiting behaviours of the evolution equation188

The evolution equation, (2.16), contains two main components: an advective term that189

describes flow driven by the pressure gradient due to fluid injection, and a diffusive term190

describing flows driven by the density difference (buoyancy) between the injected and191

ambient fluids. Equation (2.16) represents the multiphase extension of previous work on192

immiscible systems (e.g., Pegler et al. 2014; Zheng et al. 2015a) and is comparable to193

previous two-phase studies (Golding et al. 2011; Nordbotten & Dahle 2011; Nilsen et al.194

2016). Here we briefly describe how (2.16) recovers limits considered previously. We then195

detail new dynamical regimes from the multiphase formulation in §3 and discuss the196
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time transition between regimes in §4. Specifically, we show that the evolution equation,197

(2.16), recovers the sharp-interface limit (§2.3.1), the unconfined flow limit (§2.3.2) and198

the confined flow limit (§2.3.3).199

2.3.1. The sharp-interface limit200

We first consider the limit when a sharp interface exists between the injected and201

displaced fluids. This limit is recovered in monodisperse porous media, Λ → ∞, where202

no capillary fringe exists. In this limit, the saturation function s[h(x, t), z] satisfies203

s[h(x, t), z] =

{
1, 0 6 z 6 h(x, t);

0, h(x, t) 6 z 6 h0.
(2.22)

Thus, the integrals Is, In, and Iw can be computed as

Is = h, In = krn0h, and Iw = h0 − h, (2.23a, b, c)

leading to a reduced, sharp-interface model204

φ(1− Swi)
∂h

∂t
+ q

∂

∂x

[
Mkrn0h

(Mkrn0 − 1)h+ h0

]
− ∆ρgk

µn

∂

∂x

[
krn0h(h0 − h)

(Mkrn0 − 1)h+ h0

∂h

∂x

]
= 0.

(2.24)
Equation (2.24) effectively recovers an analogous form of the evolution equation for sharp-205

interface gravity currents propagating in a confined porous layer, i.e., equation (2.6) in206

Zheng et al. (2015a), or equation (3.6) in Pegler et al. (2014). The only difference is207

the inclusion of the effects of the irreducible wetting phase saturation Swi, and the end-208

point relative permeability of the non-wetting phase, krn0. By setting the two constants209

Swi = 0 and krn0 = 1, (2.24) exactly recovers those previous descriptions of immiscible210

confined gravity currents.211

2.3.2. The limit of effectively unconfined flow212

At early times, when h � h0, the flow is effectively unconfined and the pressure213

gradients associated with fluid injection are much smaller than that due to buoyancy.214

In addition, |MIn(h)| � |Iw(h)|, which reduces to Mkrn0h � h0 in the sharp-interface215

limit. Equation (2.16) then reduces to216

φ(1− Swi)
∂Is(h)

∂t
− ∆ρgk

µn

∂

∂x

[
In(h)

∂h

∂x

]
= 0, (2.25)

which is the governing equation for unconfined gravity currents, i.e. equation (3.8) in217

Golding et al. (2011). We provide a more detailed discussion in §3.3.218

2.3.3. The limit of effectively confined flow219

When the pressure gradient associated with injection is much greater than the hydro-220

static pressure gradient, (2.16) is purely advective and reduces to221

φ(1− Swi)
∂Is(h)

∂t
+ q

∂

∂x

[
MIn(h)

MIn(h) + Iw(h)

]
= 0, (2.26)

which recovers the form of the Buckley-Leverett equation for two-phase flows in confined222

porous media (e.g., Buckley & Leverett 1942; LeVeque 2002). We also note that the223

Buckley-Leverett equation was derived in the limit of zero capillary effects (Buckley &224

Leverett 1942), while (2.26) includes an effective parameterisation of capillary effects.225

In §3.4 we show that, assuming the effects of buoyancy-driven flow (diffusion term)226

are negligible, this approximate holds at late times when the flow is confined. We also227



Self-similar dynamics of two-phase flows in a confined porous layer 9

Parameter Definition Comments

N krnoµw/µn modified viscosity ratio

He he/h0 rescaled capillary length

Λ pc(s) = pe(1− s)−1/Λ pore size distribution

Table 1. Three dimensionless control parameters are identified: the modified viscosity ratio
N , rescaled capillary length He and pore size distribution parameter Λ.

note that recent studies (e.g. Pegler et al. 2014; Zheng et al. 2015a) provide detailed228

calculations for the effects of the buoyancy term in the sharp interface limit.229

3. Example calculations230

To provide concrete examples of the behaviour of confined, two-phase flows we use231

representative, power-law relative permeability functions kn(s) and kw(s), (2.7a,b), and232

evaluate the integrals In(h) and Iw(h) according to (2.13). With this choice we study233

the early-time and late-time asymptotic behaviours during the evolution of the interface234

shape h(x, t), as described by (2.16). However, we note that the theoretical framework235

could be readily applied to other flow situations with alternate forms of the capillary236

pressure and relative-permeability functions.237

3.1. Revised evolution equation238

Here we take α = 2 and β = 2, motivated by the experimental data from the Ellerslie239

standstone system (Bennion & Bachu 2005), and also assume Λ 6= 1, 1/2. Using (A 1),240

(A 3) and (2.16) we obtain the revised form of the evolution equation241

φ(1− Swi)fs(h)
∂h

∂t
+ q

∂

∂x

[
Mfn(h)

Mfn(h) + fw(h)

]
− ∆ρgk

µn

∂

∂x

[
fn(h)fw(h)

Mfn(h) + fw(h)

∂h

∂x

]
= 0,

(3.1)
where

fs(h) ≡ 1−
(

1 +
h

he

)−Λ

, (3.2a)

fn(h) ≡ krn0

(
h+

2he
1− Λ

[
1−

(
1 +

h

he

)1−Λ
]
− he

1− 2Λ

[
1−

(
1 +

h

he

)1−2Λ
])

,(3.2b)

fw(h) ≡ (h0 − h) +
he

1− 2Λ

[
1−

(
1 +

h

he

)1−2Λ
]
. (3.2c)

We note that, In(h) and Iw(h), in particular, can be evaluated explicitly for special values242

of α (appendix A). We study equation (3.1) in this paper, as a representative example, to243

demonstrate the dynamics inherent in solutions of the two-phase gravity current model,244

incorporating capillary effects.245
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3.2. Non-dimensionalization246

We now nondimensionalize the evolution equation, (3.1), and its initial and boundary
conditions, (2.17), (2.18) and (2.21), by choosing appropriate time and length scales. The
natural vertical scale is the thickness of the porous layer, h0. We define dimensionless
variables H ≡ h/hc, X ≡ x/xc, and T ≡ t/tc, where

hc = h0, xc =
∆ρgkkrn0h

2
0

µnq
, tc =

∆ρgkkrn0φ(1− Swi)h3
0

µnq2
, (3.3a, b, c)

are the characteristic length and time scales, respectively. We note that xc and tc are247

chosen such that T ∼ 1 indicates the time scale when both injection and buoyancy effects248

are equally important in driving the fluid flow. In this way, we obtain the dimensionless249

governing equation for the interface shape H(X,T )250

Fs(H)
∂H

∂T
+

∂

∂X

[
NFn(H)

NFn(H) + Fw(H)

]
− ∂

∂X

[
Fn(H)Fw(H)

NFn(H) + Fw(H)

∂H

∂X

]
= 0, (3.4)

where

Fs(H) ≡ 1−
(

1 +
H

He

)−Λ

, (3.5a)

Fn(H) ≡ H +
2He

1− Λ

[
1−

(
1 +

H

He

)1−Λ
]
− He

1− 2Λ

[
1−

(
1 +

H

He

)1−2Λ
]
, (3.5b)

Fw(H) ≡ (1−H) +
He

1− 2Λ

[
1−

(
1 +

H

He

)1−2Λ
]
. (3.5c)

251

Two new dimensionless parameters are defined in equation (3.4) that govern the be-
haviour of the propagating current

N ≡ krnoµw/µn, and He ≡ he/h0. (3.6a, b)

Thus, there are, in total, three dimensionless parameters in the problem: N , He, Λ, as252

summarized in table 1. Here N is a modified viscosity ratio, which is analogous to M ,253

the viscosity ratio in the sharp-interface model (e.g., Pegler et al. 2014; Zheng et al.254

2015a). He measures the strength of the capillary over buoyancy forces, and Λ, as first255

introduced in §2.1, characterises the distribution of pore sizes in the porous medium.256

We note that the unconfined two-phase gravity current model (e.g., Golding et al. 2011,257

2013) only includes two dimensionless parameters He and Λ. Here, where confinement258

is important, the parameter N describes the pressure gradient needed to displace the259

ambient (wetting) fluid when the thickness of the interface shape is comparable with the260

thickness of the porous layer.261

In addition, the dimensionless initial and boundary conditions become262

H(X, 0) = 0, (3.7)
263

H[Xf (T ), T ] = 0, (3.8)

and, at the origin264 [
NFn(H)

NFn(H) + Fw(H)
− Fn(H)Fw(H)

NFn(H) + Fw(H)

∂H

∂X

] ∣∣∣∣
X=0

= 1. (3.9)

Now the dimensionless governing equation, (3.4), can be solved numerically, subject to265
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Figure 3. Representative calculations for the evolution of the profile shape (black curves) and
the saturation field: (a) for N = 2,Λ = 2, He = 1/5 and (b) for N = 2,Λ = 2, He = 1.
The evolution of the interface shape H(X,T ), obtained from numerical solutions of PDE (3.4),
indicates a transition from early-time unconfined to late-time confined flow behaviours. Once
the interface shape is obtained, the saturation field is calculated based on (3.10).

initial condition (3.7) and boundary conditions (3.8) and (3.9), to provide the solution266

for the evolution of the interface shape H(X,T ). Representative numerical results for267

H(X,T ) at different times are shown in figure 3.268

Once the solution for the interface shape H(X,T ) is obtained, based on (2.9), in the di-269

mensionless coordinates (X,Z) with Z ≡ z/h0, the saturation distribution s[H(X,T ), Z]270

can also be computed according to271

s[H(X,T ), Z] =

 1−
(

1 + H−Z
He

)−Λ

, 0 6 Z 6 H(X,T ),

0, H(X,T ) 6 Z 6 1.
(3.10)

Representative results of s[H(X,T ), Z] based on the numerical solutions of (3.4) subject272

to (3.7)–(3.9) are shown in figure 3, which demonstrates the effects of capillary forces on273

the propagation of a gravity current in a porous medium. In particular, compared with274

the prediction of the sharp-interface model, the saturation of the injected non-wetting275

fluid in figure 3 varies in time and space continuously, due to the existence of a capillary276

fringe. As a result, the location of the propagating front and the interface shape, defined277

as where the saturation for the injected fluid is zero, can be different from the prediction278

of the sharp-interface model in previous studies (e.g., Pegler et al. 2014; Zheng et al.279

2015a). In addition, the value of Λ and He indicates the strength of the capillary effects,280

and we show the influence of Λ and He in figure 4, where the saturation field approaches281

the sharp-interface limit as Λ→∞ and He → 0+.282
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Figure 4. Influence of Λ and He on the saturation field based on (3.10) with H = 1/2 as an
example. (a) He = 1 and Λ = {1, 2, 10, 100} and (b) for Λ = 1 and He = {1/100, 1/10, 1, 2}. As
He →∞ or Λ→ 0+, the saturation field approaches the sharp-interface limit.

The form of (3.4) suggests that, at T = O(1), both the advective (injection) and283

diffusive (buoyancy) terms are important for the interface shape H(X,T ). However, for284

early or late times, the advective and diffusive terms have different orders of magnitude,285

which motivates us to look for the different asymptotic behaviours in §3.3 and §3.4 and286

investigate, in different asymptotic limits, the difference between the prediction of the287

sharp-interface model and the current model of two-phase partially saturating flow.288

3.3. Early-time asymptotic solutions289

At early times, T � 1, the length of the current X � 1 and the thickness H � 1,290

and the flow is effectively unconfined. Flow of the ambient is negligible and the pressure291

gradient associated with injection may be neglected, which we justify a posteriori. In this292

limit, we recover the model for a two-phase gravity current spreading in an unconfined293

porous medium (e.g., Golding et al. 2011, 2013, 2017)294

Fs(H)
∂H

∂T
− ∂

∂X

[
Fw(H)

∂H

∂X

]
= 0. (3.11)

The dimensionless statement of global mass conservation may now be written as295 ∫ Xf (T )

0

∫ H

0

[
1−

(
1 +

H − Z
He

)−Λ
]

dZdX = T, (3.12)

which determines the front location Xf (T ).296

The model includes the dimensionless parameter He, which measures the strength of297

the capillary forces. Note that the thickness H increases as injection continues, and hence298

there is a crossover time when the height of the current is comparable to the capillary299

height, H ∼ He, assuming that the capillary length is smaller than the thickness of the300

porous medium, He < 1. We can further explore two distinct limits at early times in the301

asymptotic behaviours for the unconfined two-phase flow. When H � He, the capillary302

effects are initially dominant, and when H � He, buoyancy dominates over capillarity.303

For He � 1, capillary forces remain dominant throughout the evolution of the current.304
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Figure 5. Early-time self-similar solutions: (a) strong capillary regime (§3.3.1) and (b) weak
capillary regime (§3.3.2). The solid curves represent the numerical calculations of the similarity
solutions. The dashed curves represent the asymptotic shapes near the front of the two-phase
gravity current, i.e., solution (3.16) in (a) and (3.23) in (b).

3.3.1. Strong capillarity regime: H � He305

Initially, as fluid is injected into the porous medium, H � He and the capillary effects306

are strong. In this regime, (3.11) reduces to307

H
∂H

∂T
− Λ

3He

∂

∂X

(
H3 ∂H

∂X

)
= 0. (3.13)

In addition, global mass conservation, (3.12), reduces to308

Λ

He

∫ Xf (T )

0

H2dX = T. (3.14)

This new regime, in which the flow is driven by capillary forces, has not previously been309

reported. A scaling argument suggests that in this limit X ∝ T 2/3 and H ∝ T 1/6.310

With this motivation, we define a similarity variable ξ ≡ 31/3X/T 2/3, which suggests
that the front propagates as Xf (T ) = ξf3−1/3T 2/3, where ξf is a constant to be deter-
mined. We normalize the self-similar length y ≡ X/Xf (T ) = ξ/ξf and write the interface
shape as H(X,T ) = ξf31/6(He/Λ)1/2T 1/6f(y). Then, the shape f(y) and the stretching
constant ξf can be determined by solving the following system of equations

(f3f ′)′ +
2

3
yff ′ − 1

6
f2 = 0, (3.15a)

f(1) = 0, (3.15b)

ξf =

[∫ 1

0

f(y)2 dy

]−1/3

, (3.15c)
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Figure 6. The saturation field (3.19) in the early time strong capillarity regime: (a) Λ = 2
and T/H3

e = {10−7, 10−5, 10−3}; (b) Λ = 20 and T/H3
e = {10−7, 10−5, 10−3}. A smaller T/H3

e

corresponds to stronger capillary effects while a smaller Λ corresponds to a more polydispersed
pore size distribution. Both the effects of capillary forces and polydispersed pore size reduce the
saturation of the injected fluid, as demonstrated here.

where ′ denotes differentiation with respect to y. The asymptotic behaviour of (3.15a)311

near the front, y = 1, is312

f ∼
(

2

3

)1/2

(1− y)1/2, (3.16)

which then provides two boundary conditions f(1 − ε) and f ′(1 − ε) with ε � 1. A
shooting procedure is then employed to solve (3.15) from y = 1 − ε toward y = 0 (here
we use MATLAB’s ODE45 subroutine) to obtain the solution for f(y), as shown in figure
5a. From (3.15c) we determine the value of the constant ξf ≈ 1.48. The location of the
propagating front Xf (T ) and the vertical reach Hf (T ) ≡ H(0, T ) are therefore

Xf (T ) ∼ 1.03T 2/3, (3.17a)

Hf (T ) ∼ 1.37(He/Λ)1/2T 1/6. (3.17b)

We also note that the form of (3.13) and (3.14) suggests that we can define a trans-
formation

X̃ ≡ 31/3X, (3.18a)

H̃ ≡ 3−1/3(Λ/He)H
2, (3.18b)

such that H̃(X̃, T ) satisfies the well-known nonlinear diffusion equation for a sharp-313

interface gravity current in an unconfined porous medium (e.g., Huppert & Woods 1995),314

see also (3.20) and (3.21) in §3.3.2.315
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Once the profile shape H(X,T ) is obtained, the saturation field s[H(X,T ), Z] can316

be calculated according to (3.10). Specifically, in the strong capillarity regime, defining317

Z ≡ ξf31/6(He/Λ)1/2T 1/2Z̄, (3.10) implies that318

s[H(X,T ), Z] =

 1−
[
1 + ξf31/6

(
T
H3

e

)1/6

Λ−1/2(f(y)− Z̄)

]−Λ

, 0 6 Z̄ 6 f,

0, Z̄ > f.
(3.19)

This indicates that the saturation field depends on He, Λ and also T in the early-time,319

strong-capillarity regime. In particular, He and T function together as a group T/H3
e ,320

and this is physically plausible, since a greater capillary length He and a smaller time T321

both indicate greater capillary effects. The influence of T/H3
e and Λ on the saturation322

field, s[H(X,T ), Z], are shown in figure 6 in the early-time, strong capillarity regime,323

which indicates that both the effects of capillarity and pore size distribution reduce the324

saturation of the injected fluid.325

3.3.2. Gravity current regime: H � He326

As time progresses, the vertical extent of the current increases such that H � He327

and the capillary effects become weak. For He � H � 1, before the confinement effects328

become important, (3.11) reduces to329

∂H

∂T
− ∂

∂X

(
H
∂H

∂X

)
= 0, (3.20)

which is the well-known nonlinear diffusion equation that describes the interface dynamics330

of a sharp-interface gravity current in an unconfined porous medium (e.g., Boussinesq331

1904; Barenblatt 1952; Bear 1972; Huppert & Woods 1995). In this limit, global mass332

conservation, (3.12), reduces to333 ∫ Xf (T )

0

HdX = T. (3.21)

A self-similar solution can be obtained for this system (Huppert & Woods 1995) with
X ∝ T 2/3 and H ∝ T 1/3, which we review here for completeness. We define a similarity
variable η ≡ X/T 2/3 such that the front location is given by Xf (T ) = ηfT

2/3. In terms
of a normalized variable y ≡ X/Xf (T ) = η/ηf , we may write the solution as H(X,T ) =
η2
fT

1/3g(y), where g(y) and ηf can be found by solving

(gg′)′ +
2

3
yg′ − 1

3
g = 0, (3.22a)

g(1) = 0, (3.22b)

ηf =

[∫ 1

0

g(y) dy

]−1/3

. (3.22c)

The asymptotic behaviour near the front, y = 1, is334

g(y) ∼ 2

3
(1− y), (3.23)

which provides two boundary conditions g(1−ε) and g′(1−ε) with ε� 1, and a shooting
procedure is used to solve (3.22) from y = 1− ε toward y = 0. The solution is shown in
figure 5b, from which the constant ηf = 1.48 is determined numerically. The location of
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Figure 7. Influence of Λ and He on the inlet height Hi at the origin. The asymptotic solutions
(3.28a) as He → 0+ or Λ → ∞, and (3.28b) as He → ∞ or Λ → 0+ are also shown as the
dash-dotted and dotted curves, respectively.

the propagating front Xf (T ) and the vertical extent Hf (T ) is therefore given by

Xf (T ) ∼ 1.48T 2/3, (3.24a)

Hf (T ) ∼ 1.30T 1/3, (3.24b)

as found previously by (e.g., Huppert & Woods 1995).335

3.3.3. Transition time between early time regimes336

At early times we have now identified two regimes, in which capillary forces or buoyancy337

dominate the dynamics of the spreading current. A simple estimate of the transition338

between these two regimes can be constructed from an estimate of the transition between339

the two height scales given by (3.17b) and (3.24b) in the capillary and gravity current340

regimes, respectively. The balance suggests that341

Tt ≈ (He/Λ)3. (3.25)

Therefore, a greater He, or a smaller Λ, both suggesting stronger capillary effects, would342

result in a greater transition time Tt. We also note that to ensure unconfined flow, we343

require that H � 1, which is only satisfied if Tt � 1. This places a constraint on the344

values of He and Λ for the transition to be observed in the early time period.345
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Figure 8. Late-time similarity solutions for N = 1/5: (a) shock solution (3.30) in the sharp-in-
terface limit, and (b) modified shock solution with height Hs = Hi ≈ 0.934 < 1 and front
location ζs ≈ 1.30. The saturation field is also computed according to (3.10) and shown next to
the similarity solutions.

3.4. Late-time asymptotic solutions346

At late times T � 1, the length of the current X � 1, and the pressure gradient in347

the ambient fluid associated with injection can no longer be neglected. In this limit, we348

first examine the effects of confinement by neglecting buoyancy driven flows. In this case,349

(3.4) reduces to a nonlinear hyperbolic equation,350

Fs(H)
∂H

∂T
+

∂

∂X

[
NFn(H)

NFn(H) + Fw(H)

]
= 0. (3.26)

We note again that (3.26) is analogous to the well-known Buckley-Leverett equation for351

partially saturating two-phase flows in a porous medium (Buckley & Leverett 1942).352

Standard theory for hyperbolic conservative laws can be used to study the analytical353

behaviours of the equation (e.g., LeVeque 2002).354

3.4.1. The inlet thickness Hi355

We first note that the form of (3.26) suggests that X ∝ T for T � 1, and the inlet356

thickness approaches a constant H ∼ Hi at X = 0. In this case, boundary condition357

(3.9) reduces to358

(1−Hi) +
He

1− 2Λ

[
1−

(
1 +

Hi

He

)1−2Λ
]

= 0, (3.27)

which indicates that the inlet thickness Hi depends on the capillary height He and the
pore-size distribution parameter Λ and is independent of the modified viscosity ratio N .
The influence of He and Λ on Hi is calculated numerically from (3.27) and is shown in
figure 7. Explicit expressions of Hi are also available, for a given Λ, in the asymptotic
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limits of He → 0+ (weak capillarity) and He → ∞ (strong capillarity), or, for a given
He, in the asymptotic limit of Λ→ 0+ (polydispersed pore size distribution) and Λ→∞
(monodispersed pore size distribution). These expressions,

Hi ∼ 1 +
He

1− 2Λ
− H2Λ

e

(1− 2Λ)(He + 1)2Λ−1
∼ 1, as He → 0+ or Λ→∞, (3.28a)

Hi ∼
(

Λ

He

)−1
[

1−
(

1− Λ

He

)1/2
]
∼ 1

2
, as He →∞ or Λ→ 0+, (3.28b)

are plotted as the dotted and dot-dashed curves, respectively, in figure 7. The asymptotic359

result (3.28a) in the weak capillarity or monodisperse pore size limit indicates that the360

interface contacts the top boundary and recovers the sharp interface limit (Pegler et al.361

2014; Zheng et al. 2015a). In comparison, in the strong capillarity, or broad pore-size362

distribution limit, (3.28b) indicates that the interface does not contact the top boundary,363

which provides a major difference from the sharp interface limit and can be of importance364
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the dashed curve. (a) With N = 2 and Λ = 2, F (H) is non-monotonic for He = {1/1000, 1/5}
while increases monotonically for He = 1. (b) With N = 1/2 and Λ = 2, F (H) increases
monotonically for all He. The flux functions with the same viscosity ratio N in the sharp
interface limit are also plotted in both (a) and (b).

for practical applications such as geological CO2 sequestration, as we discussed in detail365

in §6.366

3.4.2. Sharp interface limit: He → 0+ or Λ→∞367

When He → 0+ or Λ→∞, the capillary effects are weak and the pore size is effectively368

monodisperse for the confined two-phase flow. In this asymptotic limit, (3.26) reduces to369

∂H

∂T
+

∂

∂X

[
NH

(N − 1)H + 1

]
= 0, (3.29)

which includes only one parameter N ≡ Mkrn0, which is the modified viscosity ra-370

tio. Equation (3.29) recovers the sharp-interface model when the capillary effects are371

neglected recovering, for example, equation (3.13) in Pegler et al. (2014) or equation372

(3.6) in Zheng et al. (2015a). The only difference is that (3.29) incorporates the end-373

point permeability through the modified viscosity ratio N , rather than the viscosity374

ratio M ≡ µw/µn in (3.13) in Pegler et al. (2014) and (3.6) in Zheng et al. (2015a).375

The scalar equation (3.29) has a convex flux function, as discussed in Zheng et al.376

(2015a). Thus, the theory of hyperbolic conservation laws indicates that the initial con-377

dition will: (i) evolve into a shock solution when N < 1, (ii) retain the inital shape when378

N = 1, or (iii) evolve into a rarefaction solution when N > 1. In particular, in the case379

of (i) and (ii), a self-similar solution can be obtained by further considering the effects380
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Figure 11. The location of the shock front is determined such that the amount of injected
fluid in the shaded area satisfies the global mass constraint (3.34). Three scenarios are demon-
strated here: (a) a compound wave solution for a non-monotonic flux function F (H), (b) a
modified shock solution from a non-monotonic F (H), and (c) a modified shock solution from a
monotonically increasing F (H).

of buoyancy. More detailed discussions can be found in Pegler et al. (2014) and Zheng381

et al. (2015a).382

For completeness, we review the explicit expressions for the shock and rarefaction383

solutions, depending on the value of N . The shock solution, in particular, exists when384

N < 1, and is given by385

H(X,T ) =

{
1, X/T 6 1;

0, X/T > 1.
(3.30)

In addition, the speed of the propagating fronts attaching the bottom boundary, denoted
by Xf (T ), and the top boundary, denoted by Xf2(T ), is given by

Xf (T ) = Xf2(T ) = T. (3.30a, b)



Self-similar dynamics of two-phase flows in a confined porous layer 21

1

10

100

0.1 1 10 100 1000
0

0.2

0.4

0.6

0.8

1

0.1 1 10 100 1000

Hs

(a) He = 1, Ʌ = 2Hs
Hi

N
10-1 100 101 102 103

ζs

N
10-1 100 101 102 103

100

101

102

(b) He = 1, Ʌ = 2

N ≈ 3.32 N ≈ 3.32

Figure 12. Influence of N on the height and location of the shock front, Hs and ζs, respectively.
We set He = 1 and Λ = 2 in this example. Two regimes are identified for either a compound
wave or modified shock solution, separated by a critical viscosity ratio N ≈ 3.32 as the regime
boundary.

When N > 1, in comparison, the rarefaction solution is used to describe the evolution of386

the interface shape H(X,T ), which can be written as387

H(X,T ) =


1, X/T 6 1/N ;(√

N/(X/T )− 1
)
/(N − 1), 1/N < X/T 6 N ;

0, X/T > N.

(3.31)

The location of the propagating fronts along the bottom and top boundaries may also
be computed as

Xf (T ) = NT, and Xf2(T ) = T/N. (3.32a, b)

The rarefaction solution for N = 2 and the shock solution for N = 1/2 are shown in388

figure 8a and figure 9a, respectively.389

3.4.3. Similarity solutions in the advective limit390

In the advective limit, in which buoyancy-driven flow is negligible, we find a series391

of self-similar solutions which depend on the effective viscosity ratio N , the capillary392

height He and the pore-size distribution Λ. We now investigate the original hyperbolic393

evolution equation, (3.26), and explore the influence of control parameters N , He and394

Λ. We first define a similarity variable as ζ ≡ X/T and hence H(X,T ) = H(ζ). Then,395

(3.26) becomes396

ζ = F (H) ≡ 1

Fs(H)

∂

∂H

[
NFn(H)

NFn(H) + Fw(H)

]
, (3.33)

subject to global mass conservation which, according to (2.15), becomes397 ∫ ζs

0

(
H +

He

1− Λ

[
1−

(
1 +

H

He

)1−Λ
])

dζ = 1, (3.34)

where ζs ≡ Xf/T is the location of the shock front.398

Depending on the values of N , He and Λ, two types of similarity solutions H(ζ) are399
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Figure 13. Influence of He on the height Hs and location ζs of the shock front. We set N = 2
and Λ = 2 in this example, and identify two regimes that correspond to either a compound
wave a modified shock solution. A critical capillary length He ≈ 0.63, which sets the regime
boundary, is calculated for this example.

available; (i) a compound wave solution, which includes a stretching region and a shock400

front (see figure 9b) and (ii) a modified shock solution with an inlet thickness Hi < 1 (see401

figure 8b and figure 9c). Here the word “modified” is simply used in contrast to the shock402

solution, (3.30), with Hi = 1 in the sharp-interface limit. In addition, the saturation field403

now becomes s[H(X,T ), Z] = s(ζ, Z). With the interface shape H(ζ) available, s(ζ, Z)404

is then computed according to (3.10) and is also shown next to the similarity solutions405

in figures 8 and 9.406

We note that the similarity solution H(ζ) is related to the form of the flux function407

F (H) defined in (3.33). Representative calculations of the flux function F (H) are shown408

in figure 10 for particular sets of N , Λ and He. F (H) exhibits two different trends,409

depending on N , Λ and He; (i) F (H) increases monotonically with H, and (ii) F (H) is410

non-monotonic and reaches a maximum between H = 0 and H = Hi. The flux functions411

in the sharp-interface limit for the same viscosity ratio N are also shown as the dashed412

curves in figure 10, which is approached as He → 0+ with major difference near H = 0.413

The construction of these similarity solutions is demonstrated in figure 11a for a com-414

pound wave solution and in figure 11b,c for a modified shock solution. The location of415

the shock fronts (ζs) in both cases is determined such that the global mass constraint416

(3.34) is satisfied. We note that the “equal-area” rule (e.g., Chapter 11, LeVeque 2002),417

as employed in previous studies (e.g., Taghavi et al. 2009; Zheng et al. 2015b), does418

not apply in the present problem since the saturation of the injected fluid varies along419

the vertical direction because of capillary effects. In addition, the inlet thickness Hi is420

calculated according to (3.27), or (3.28) in the asymptotic limits of He → 0+ or Λ→∞.421

The influence of the dimensionless control parameters N , Λ and He on the location (ζs)422

and height (Hs) of the shock front are demonstrated in figures 12 and 13. In particular,423

two regimes can be identified, which correspond to either a compound wave or a modified424

shock solution. For example, with He = 1 and Λ = 2, the critical viscosity ratio N ≈ 3.32425

distinguishes the two types of solutions, as shown in figure 12. In addition, with N = 2426
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Items Case 1 Case 2 Case 3 Case 4 Case 5

Parameters:

N 2 2 2 1/2 1/2

Λ 2 2 2 2 2

He 10−3 1/5 1 10−3 1/5

Early-time unconfined flows:

when T � (He/Λ)3,

Similarity C C C C C

Xf ∼ 1.03T
2
3 ∼ 1.03T

2
3 ∼ 1.03T

2
3 ∼ 1.03T

2
3 ∼ 1.03T

2
3

Hf ∼ 0.0306T
1
6 ∼ 0.433T

1
6 ∼ 0.969T

1
6 ∼ 0.0306T

1
6 ∼ 0.433T

1
6

when (He/Λ)3 � T � 1,

Similarity B —– —– B —–

Xf ∼ 1.48T
2
3 —– —– ∼ 1.48T

2
3 —–

Hf ∼ 1.30T
1
3 —– —– ∼ 1.30T

1
3 —–

Late-time confined flows:

when T � 1,

Similarity CW CW MS MS MS

Xf ∼ 1.91T ∼ 1.59T ∼ 3.24T ∼ 1.00T ∼ 1.30T

Hi ∼ 1.00 ∼ 0.934 ∼ 0.731 ∼ 1.00 ∼ 0.934

Table 2. Summary of control parameters and asymptotic behaviours for solutions to (3.4) in §4.
HereXf is the front location,Hf is the vertical reach andHi is the time-indepdent inlet thickness
at late times. For early-time unconfined flows, “C” represents a capillarity similarity solution
(§3.3.1) and “B” represents a buoyancy similarity solution (§3.3.2). For late-time confined flows,
“CW” represents the a compound wave solution (§3.4) and “MS” represents a modified shock
solution (§3.4).

and Λ = 2, a critical capillary length He ≈ 0.63 is identified as the regime boundary, as427

shown in figure 13.428

We note that when N > 1, the compound wave solution degenerates into the rarefac-429

tion solution (3.31) in the sharp interface limit for He → 0+ (weak capillarity) or Λ→∞430

(weak pore heterogeneity). In this case, the height of the shock front Hs → 0+, and the431

stretching region extends to the bottom boundary (Z = 0). In comparison, when N < 1,432

the height of the modified shock Hs = Hi → 1− and the solution degenerates into the433

shock solution (3.30) for He → 0+ or Λ→∞.434
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Figure 14. Evolution of the front location Xf (T ) in (a) and vertical reach Hf (T ) in (b) for
N = 2, Λ = 2 and He = 1/1000. Numerical solutions are shown as dots, while the early-time
and late-time self-similar solutions are shown as straight lines. The insets in (b) are the profiles
at different representative times T = {10−14, 10−4, 103} from the numerical solutions.

4. Full numerical solutions435

In order to confirm the presence of the various self-similar solutions and to explain in436

more details the transition between the dominant physical behaviours, we numerically437

solve (3.4) subject to initial condition (3.7) and boundary conditions (3.8) and (3.9).438

We then compare the numerical results with the theoretical predictions of various sim-439

ilarity solutions in the early and late time periods, respectively. We also show the time440

transition between the different asymptotic regimes we have identified. The dimensionless441

control parameters we have chosen for the case studies and the corresponding asymptotic442

solutions and front propagation laws in each case are summarized in table 2.443

A finite difference scheme, developed by Kurganov & Tadmor (2000), was employed to444

solve the advective-diffusive equation, (3.4), which has been tested in previous studies of445

sharp-interface models of immiscible fluid displacement in porous media and horizontal446

channels (e.g., Zheng et al. 2015a,b; Guo et al. 2016b). For numerical convenience, we447

set the farfield thickness h(x → ∞) = O
(
10−15

)
, and solve (3.4) with different domain448

lengths for numerical simulations spanning a wide range of time (and length) scales.449

Convergence tests were performed to verify that the results are independent of further450

mesh refreshment.451
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Figure 15. Evolution for the rescaled shapes with N = 2, Λ = 2 and He = 1/1000. The PDE
numerical simulation departs from the capillarity similarity solution of (3.15) in the early-time
period in (a), approaches the buoyancy similarity solution (3.22) at intermediate times in (b),
before eventually approaches the confined similarity solution in the late-time period in (c).

4.1. Time transition between early- and late-time self-similar behaviours452

In the sharp interface limit, viscosity ratios N > 1 correspond to a rarefaction solution453

in the late time period. To investigate the capillary effects, we set N = 2, Λ = 2 and454

performed numerical solutions for He = {1/1000, 1/5, 1}. The evolution of the front455

location Xf (T ), vertical extent Hf (T ) and the profile shapes H(X,T ) are shown in456

figures 14–17. We have also investigated the time transition for N = 1/2, and the results457

and discussions can be found in Appendix B.458

At early times, the capillarity similarity solution appears in all cases, as evidenced459

from both the numerical results for the front location (figures 14, 16, 17) and interface460

shape (figures 15a, 16c, 17c). As time progresses, the numerical solution approaches461

the buoyancy similarity solution at intermediate times for the case with He = 1/1000462

(figures 14, 15b). In comparison, for He = {1/5, 1}, the buoyancy similarity solution463

does not appear in the numerical solutions (figures 16, 17). At late times, the numerical464

solutions approach three different late-time similarity solutions: (i) For He = 1/1000, the465

rarefaction solution provides a good approximate (figures 14, 15c), (ii) for He = 1/5, the466
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Figure 16. Evolution for the front location Xf (T ) in (a), vertical reach Hf (T ) in (b) and
rescaled profile shapes in (c,d) for N = 2, Λ = 2 and He = 1/5. In (a,b), the numerical solutions
are shown as dots, while the early-time and late-time self-similar solutions are shown as straight
lines. The insets in (b) are the profiles at different representative times T = {10−7, 100, 103}
from numerical solutions. In (c,d), the numerical solutions depart from the capillarity similarity
solution of (3.15) in the early-time period in (a), while they approach the confined similarity
solution (compound wave) in the late-time period in (b).

numerical solutions approach a compound wave solution (figure 16a,b,d), and (iii) for467

He = 1, the numerical solutions approach a modified shock solution (figure 17a,b,d).468
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Figure 17. Evolution for the front location Xf (T ) in (a), vertical reach Hf (T ) in (b) and
profile shapes in (c,d) for N = 2, Λ = 2 and He = 1. In (a,b), the numerical solutions are
shown as dots, while the early-time and late-time self-similar solutions are shown as straight
lines. The insets in (b) are the profiles at different representative times T = {10−8, 10−1, 103}
from numerical solutions. In (c,d), the numerical solutions depart from the capillarity similarity
solution of (3.15) in the early-time period in (c), while they approach the confined similarity
solution (modified shock) in the late-time period in (d).

5. Schematic regime diagram and discussions469

5.1. Schematic regime diagram470

A schematic regime diagram is provided in figure 18, which summarizes the evolution of471

the interface shape for two-phase fluid flows driven by injection into a confined porous472

layer. We have identified six possible similarity solutions: a capillarity solution (C) and473
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Figure 18. Schematic regime diagram summarizing the possible asymptotic behaviours during
fluid injection into a confined porous layer. Six possible similarity solutions are identified: a
capillarity solution (C) and buoyancy solution (B) for the early-time unconfined flows, and a
shock solution (S), a modified shock solution (MS), a compound wave solution (CW) and a
rarefaction solution (R) for the late-time confined flows. The early-time transition time Tt is
given by (3.25), while the late-time transition time Tt2 = Tt2(N,He,Λ).

buoyancy solution (B) for the early-time unconfined flows, and a shock solution (S),474

a modified shock solution (MS), a compound wave solution (CW), and a rarefaction475

solution (R) for the late-time confined flows. In the sharp-interface limit, the interface476

envolves from the buoyancy solution (B) to either a rarefaction solution (R) or a shock477

solution (S).478

With capillary effects, in comparison, the flow partially saturates the porous medium479

and starts from an early-time capillarity solution (C) before eventually developing into480

either a modified shock solution (MS) or a compound wave solution (CW). We also note481

that, when the capillary effects are weak, the buoyancy solution (B) can appear as a482

good approximate to describe the flow behavour at intermediate times. In addition, the483

modified shock (MS) and compound wave (CW) solutions at late times reduce to the484

shock (S) and the rarefaction (R) solutions in the asymptotic limit of zero capillarity485

(He → 0+). The specific pathways taken in the regime diagram (figure 18) are based on486

the values of the three dimensionless parameters N , He and Λ, as we describe in more487

detail in §5.2.488

5.2. Influence of control parameters N , He and Λ489

The influence of dimensionless parameters N , He and Λ on the behaviour of similarity490

solutions in the schematic regime diagram (figure 18) is summarised in table 3.491

In particular, in the early-time period, for the capillarity similarity solution (C), the492

universal shape f(y) and the location of the propagating front Xf (T ) are both indepen-493

dent of N , He and Λ, as calculated from (3.15) and (3.17a). However, the vertical front494

Hf , given by (3.17b), scales with (He/Λ)1/2. For the buoyancy similarity solution (B),495

the universal shape g(y), the front locations Xf and Hf are all independent of the control496

parameters N , He and Λ.497

In the late-time period, in comparison, the flow is confined, and the similarity solutions498

in §3.4 can be influenced by N , He and Λ. In the limit of negligible capillary effects, the499
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Similarity solutions Items N He Λ

Early-time unconfined flows:

Universal shape f(y) 7 7 7

Capillarity (C) Front location Xf (T ) 7 7 7

Vertical reach Hf (T ) 7 3 3

Universal shape g(y) 7 7 7

Buoyancy (B) Front location Xf (T ) 7 7 7

Vertical reach Hf (T ) 7 7 7

Late-time confined flows:

Universal shape 7 7 7

Shock (S) Front location Xf (T ) 7 7 7

Inlet thickness Hi 7 7 7

Universal shape 7 7 7

Modified shock (MS) Front location Xf (T ) 7 3 3

Inlet thickness Hi 7 3 3

Universal shape 3 3 3

Compound wave (CW) Front location Xf (T ) 3 3 3

Inlet thickness Hi 7 3 3

Universal shape 3 7 7

Rarefaction (R) Front location Xf (T ) 3 7 7

Inlet thickness Hi 7 7 7

Table 3. The influence of dimensionless parameters N , He and Λ on the similarity solutions for
the interface shape H(X,T ) in the schematic regime diagram (figure 18). Here N is the modified
viscosity ratio, He is the rescaled capillary length and Λ is the pore heterogeneity parameter, as
defined in table 1. The “universal shape” in the late-time confined flow limit is defined as the
universal functional form of H/Hi vs X/Xf . Here 3 indicates that the parameter is relevant,
while 7 indicates that the parameter is irrelevant.

model recovers the sharp-interface case with the viscosity ratio N as the only control500

parameter, which determines the shock (S) and rarefaction (R) solutions in §3.4.2. With501

capillary effects, the interface shape evolves into either a modified shock (MS) or a502

compound wave (CW) solution, with the front location Xf depending on N , He and503

Λ and the inlet thickness Hi < 1 depending on He and Λ from (3.27).504

Once the interface shape H(X,T ) is obtained, the saturation field can be calculated505

based on (3.10) and is only dependent on He and Λ. The influence of Λ and He has506

already been shown in figure 4, with H = 1/2 as an example. We note that the calculation507

demonstrates that the saturation field approaches the sharp-interface limit as Λ → ∞,508

the limit of a monodispersed medium, or He → 0+, where the capillary entry pressure509

becomes negligible.510
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Items Unit Sleipner In Salah

Geophysical data:

Permeability k [mD] 2.0× 103 20

Porosity φ [–] 0.36 0.17

Thickness h0 [m] 11.3 20

CO2 density ρn [kg/m3] 760 678

Brine density ρw [kg/m3] 1.02× 103 978

CO2 viscosity µn [mPa·s ] 0.060 0.056

Brine viscosity µw [mPa·s ] 0.80 0.32

Injection rate q [Mt/yr] 1.0 0.30

Length of horizontal well lw [km] 4.1 1.0

Two-phase flow properties:

Irreducible brine saturation Swi [–] 0.11 0.11

End-point relative permeability krn0 [–] 0.116 0.116

Capillary entry pressure pe [kPa] 21.2 212

Characteristic scales:

Capillary length hc [m] 8.3 72

Time scale tc [yr] 1.4 0.024

Length scale xc [m] 12 3.5

Dimensionless control parameters:

Modified viscosity ratio N [–] 1.5 0.66

Pore size distribution Λ [–] 2 2

Rescaled capillary length He [–] 0.74 3.6

Sharp interface model:

Viscosity ratio M [–] 13 5.7

Time scale tcs [yr] 14 0.23

Length scale xcs [m] 1.1× 103 30

Table 4. CO2 geological sequestration projects at Sleipner and In Salah. The geophysical and
two-phase flow data are taken from Bennion & Bachu (2005), Golding et al. (2011), Guo et al.
(2016a), Yu et al. (2017) and Cowton et al. (2018). For the Sleipner project, the length of the
horizontal well is taken from EPA (2010), while for the In Salah project, only the injection well
KB-501 is considered with length 1 km (Petropoulos & Srivastava 2016). Swi is taken as the
average value of four sandstone samples in Krevor et al. (2012). The capillary entry pressure

is estimated as pe ≈ γ/k1/2, where k is the permeability and γ ≈ 30 mN/m is the interfacial
tension between supercritical CO2 and brine (Bachu & Bennion 2009). The time and length
scales (tcs and xcs) in the sharp interface model are defined in (2.11b,c), respectively, in Zheng
et al. (2015a).
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Figure 19. The distribution of supercritical CO2 in the saline aquifer at the Sleipner site
at t = {1, 10, 100} yr: (a) shows simulation results based on the current model of partially
saturating flows; the CO2 front reaches xf ≈ {0.239, 2.23, 22.1} km and covers a total area of
A ≈ {1.99, 19.5, 194}×10−3 km2 at the corresponding times. (b) shows simulation results based
on the sharp interface model (Pegler et al. 2014; Zheng et al. 2015a); the CO2 front arrives at
xf ≈ {1.18, 9.85, 90.2} km and covers an area of A ≈ {0.89, 8.9, 89} × 10−3 km2 at identical
times.

6. Implications to CO2 geological sequestration511

While the present study is applicable to many confined, two-phase flows in porous me-512

dia, we briefly discuss the implication of the current study to the geological sequestration513

of CO2. We use representative properties of two practical CO2 sequestration projects,514

the Sleipner project in Norway and the In Salah project in Algeria, as summarized in515

table 4. We compare the evolution of the injected supercritical CO2 in the saline aquifer516

computed using two different models for fluid injection into a confined porous layer: The517

sharp interface model (Pegler et al. 2014; Zheng et al. 2015a) and the model of two-518

phase flows presented here. The main results are summarised in table 5, including the519

front loation xf (t), the vertical reach hf (t) and the total area covered by the spreading520

CO2 current A(t) at different representative times.521

We note that the form of the capillary pressure and relative permeability curves can522

significantly change the model results of partially saturating CO2 flows in a saline aquifer.523

In the absence of multiphase flow properties for the specific sites, we use the laboratory524

measurements from Bennion & Bachu (2005) for CO2 in Ellerslie Sandstone samples525

in the Alberta Basin, Canada. A review of various models for consolidated rocks and526

more recent studies can be found in Li & Horne (2006) and Krevor et al. (2012). The527

main focus of the calculation in this section is to provide an illustrative example which528
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Figure 20. The distribution of supercritical CO2 at the In Salah site at t = {1, 10, 100} yr: (a)
shows simulation results based on the current model of partially saturating flows; the CO2 front
reaches xf ≈ {1.85, 18.5, 185} km and covers an area of A ≈ {21.4, 211, 2110}×10−3 km2 at the
corresponding times. (b) shows simulation results based on the sharp interface model (Pegler
et al. 2014; Zheng et al. 2015a); the CO2 front arrives at xf ≈ {0.716, 6.86, 68.4} km and covers
a total area of A ≈ {2.6, 26, 260} × 10−3 km2 at identical times.

demonstrates, in principle, how capillary forces and pore-size distribution can modify the529

dynamic behaviour of the CO2 current such as the evolution of the interface shape, the530

front location and the total area covered by the injected CO2.531

The evolution of the distribution of the injected supercritical CO2 in the saline aquifer532

is shown at three different times, t = {1, 10, 100} years, for the Sleipner project (figure 19)533

and In Salah project (figure 20). For both projects, the distribution of CO2 behaves very534

differently from the prediction of the sharp interface model, considering the effects of the535

capillary forces and the pore size distribution. Neglecting the effects of capillary forces536

and fluid mixing, the sharp interface model predicts that the interface shape between the537

CO2 current and brine approaches a rarefaction solution as time progresses, while the538

current model of two-phase partially saturating flows indicates that the interface shape539

approaches the modified shock solution, with an inlet height of 8.8 m at the Sleipner540

site and 11.4 m at the In Salah site. The numerical solutions clearly demonstrate such541

behaviours.542

One key aspect is the location of the propagating front of the injected CO2. The543

effects of capillary forces and pore size distribution impose different influence for the544

Sleipner and In Salah projects. The numerical simulation shows that at Sleipner, CO2545

spreads slower in the partially saturating flow model than the sharp-interface model. The546
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Items Unit Sleipner (SI) Sleipner (UF) In Salah (SI) In Salah (UF)

Front location:

Year 1 [km] 1.18 0.239 0.716 1.85

Year 10 [km] 9.85 2.23 6.86 18.5

Year 100 [km] 90.2 22.1 68.4 185

Vertical reach:

Year 1 [m] 2.2 8.8 16 11.4

Year 10 [m] 4.1 8.8 20 11.4

Year 100 [m] 7.1 8.8 20 11.4

Area of CO2:

Year 1 [km2] 8.9×10−4 1.99×10−3 2.6×10−3 2.14×10−2

Year 10 [km2] 8.9×10−3 1.95×10−2 2.6×10−2 2.11×10−1

Year 100 [km2] 8.9×10−2 1.94×10−1 2.6×10−1 2.11

Table 5. Implications to CO2 geological sequestration projects at the Sleipner and In Salah
sites: Predictions for the location of the spreading front (xf (t)), the vertical reach hf (t) and total
area covered by the CO2 current (A(t)) from two different models. “SI” represents the sharp
interface model (Pegler et al. 2014; Zheng et al. 2015a) and “UF” represents the partially
saturating flow model (current study).

front location reaches xf ≈ {0.239, 2.23, 22.1} km at t = {1, 10, 100} years, compared547

with xf ≈ {1.18, 9.85, 90.2} km based on the sharp interface model. In comparison, at548

the In Salah site, the partially saturating CO2 front spreads much faster and reaches549

xf ≈ {1.85, 18.5, 185} km at the t = {1, 10, 100} years, while the sharp interface model550

predicts xf ≈ {0.716, 6.86, 68.4} km at the corresponding times. We note that at the In551

Salah site, the capillary length he = 72 m is much greater than that at the Sleipner site552

where he = 8.3 m and hence the average saturation of CO2 is smaller in the partially553

saturating CO2 current and the front spreads faster.554

The effect of capillary forces, as exemplified by our partially saturated flow formulation,555

is an increased efficiency of trapping. The volume of reservoir rock contacted by the556

current, known as the sweep efficiency, affects the rates of both dissolution and capillary557

trapping. In our 2D formulation, this may be expressed as a difference on the total area558

A (in the plane of the simulation) covered by the CO2 current. As exemplified by the559

profiles in figures 19 and 20, the sweep efficiency of the capillary currents is improved at560

both Sleipner and In Salah. At the Sleipner site, we obtain A ≈ {1.99, 19.5, 194} × 10−3
561

km2 from the two phase model at t = {1, 10, 100} years, which is an increase from562

A ≈ {0.89, 6.9, 89} × 10−3 km2 from the sharp interface model. At the In Salah site,563

the two phase model predicts that A ≈ {21.4, 211, 2110} × 10−3 km2 at t = {1, 10, 100}564

years, which is also a significant increase from A ≈ {2.6, 26, 260} × 10−3 km2 from the565

sharp interface model. Therefore, at both sites, the effects of capillary forces suggest an566

increase in the area covered by the CO2 current, and hence an increase of the amount of567

CO2 that can be trapped from dissolution into brine.568
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7. Summary and conclusions569

We have investigated the behaviour of two-phase partially saturating flows resulting570

from fluid injection into a confined porous layer, and focus on the evolution of the fluid-571

fluid interface, the location of the propagating fronts and the saturation field of the572

injected and displaced fluids. We derive an evolution equation to describe the dynamics573

of the interface, from which the saturation field can be subsequently calculated. We also574

provide an example calculation to demonstrate the transition from early-time unconfined575

to late-time confined flows, and we obtain six flow regimes in which the current exhibits576

different self-similar spreading behaviours (figure 18). Three of these regimes (C, MS577

and CW in figure 18) are due to the action of capillary forces in the polydispersed578

porous medium and are different from those in the sharp-interface model (B, S and R in579

figure 18) (Pegler et al. 2014; Zheng et al. 2015a). It is of practical interests to explore580

the implications to the geological CO2 sequestration, which we briefly discussed in §6581

before we close the paper. Our example calculations suggest that the capillary forces582

can significantly modify the evolution of the front location of the CO2 current and the583

efficiency of sweeping and trapping.584
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Appendix A. Evaluating the integrals In(h) and Iw(h)590

We evaluate the integrals In(h) and Iw(h), given that the relative permeability func-591

tions kn(s) and kw(s) are in power-law forms, i.e., equation (2.7a,b). First, the vertical592

integration of the wetting-phase relative permeability function kw(s) provides593

Iw(h) =


h0 − h+ he

1−βΛ

[
1−

(
1 + h

he

)1−βΛ
]
, βΛ 6= 1;

h0 − h− he log
(

1 + h
he

)
, βΛ = 1.

(A 1)

The vertical integration of the non-wetting-phase relative permeability function kn(s)594

can also be obtained explicitly for special values of α in equation (2.7a). For example,595

when α = 1, we have596

In(h) =


krn0

(
h+ he

1−Λ

[
1−

(
1 + h

he

)1−Λ
])

, Λ 6= 1;

krn0

[
h+ he log

(
1 + h

he

)]
, Λ = 1.

(A 2)
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Figure 21. Evolution for the front location Xf (T ) in (a) and vertical reach Hf (T ) in (b) for
N = 1/2, Λ = 2 and He = 1/1000. PDE numerical solutions are shown as dots, while the
early-time and late-time self-similar solutions are shown as straight lines. The insets in (b)
are the profiles at different representative times T = {10−14, 10−4, 103} from PDE numerical
solutions.

When α = 2, which excellently fits the experimental data from a CO2-Ellerslie standstone597

system (Bennion & Bachu 2005), we obtain598

In(h) =



krn0

(
h+ 2he

1−Λ

[
1−

(
1 + h

he

)1−Λ
]
− he

1−2Λ

[
1−

(
1 + h

he

)1−2Λ
])

, Λ 6= 1, 1/2;

krn0

(
h− 2he log

(
1 + h

he

)
+ he

[
1−

(
1 + h

he

)−1
])

, Λ = 1;

krn0

(
h+ he log

(
1 + h

he

)
+ 4he

[
1−

(
1 + h

he

)1/2
])

, Λ = 1/2.

(A 3)
The resulting expressions (A 1) and (A 3) are then substituted into the evolution equation599

(2.16) to obtain a revised form for further analyses in §3.600

Appendix B. Transition dynamics: N = 1/2601

In the sharp interface limit, viscosity ratios N < 1 result in a shock solution in the late602

time period. We set N = 1/2, Λ = 2 and He = {1/1000, 1/5} in the numerical solutions603

to demonstrate the capillary effects on the evolution of the front location and interface604

shape, as shown in figures 21–23.605

When He = 1/1000, the numerical solution starts from a capillarity similarity solution606
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Figure 22. Evolution for the rescaled shapes with N = 1/2, Λ = 2 and He = 1/1000. The
numerical simulation departs from the capillarity similarity solution of (3.15) in the early-time
period in (a), approaches the buoyancy similarity solution (3.22) at intermediate times in (b),
before eventually approaches the confined similarity solution in the late-time period in (c).

at early times (figures 21, 22a). Then, the numerical solution departs from the capillarity607

similarity solution while approaches the buoyancy similarity solution at intermediate608

times (figures 21, 22b). At late times, the numerical solution approaches a shock solution609

(figures 21, 22c). In comparison, when He = 1/5, the numerical solution does not show610

the buoyancy similarity solution at intermediate times, while it approaches a modified611

shock solution at late times (figure 23a,b,d).612
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