354 research outputs found

    Breast density: radiological traps

    Get PDF

    An overview of a systems model of cassava and cassava pests in Africa

    Get PDF
    A systems model is described for cassava, Manihot esculenta Crantz, two of its introduced herbivores, the cassava green mite (CGM), Mononychellus tanajoa (Bondar), sensu lato, and the cassava mealybug (CM), Phenacoccus manihoti Mat.-Ferr., the introduced CM parasitoid, Epidinocarsis lopezi (DeSantis) and coccinellid predator of the genus Hyperaspis. The systems model includes the effects of weather, soil nitrogen and water levels on the interactions of the system's components. The model simulates the distribution of developmental times of cohorts initated at the same time, as well as the number and biomass (energy) dynamics of all populations over time. Biomass acquisition and allocation at the population and organism subunit levels (e.g. leaves, fruit, ova) were also simulated. A common acquisition (i.e. functional response) submodel was used to estimate daily photosynthetic as well as nitrogen and water uptake rates in cassava, in addition to herbivory, parasitism and predation rates for the arthropod species. This paper presents an overview of the systems model. Simulation results for the plant under pest free conditions were compared to field data. In addition, the model was used to estimate tuber yield losses due to CM and CGM feeding, and to examine the beneficial effects of introduced CM natural enemies as measured by reductions in tuber yield losse

    Itinerant Ferromagnetism in the Periodic Anderson Model

    Full text link
    We introduce a novel mechanism for itinerant ferromagnetism, based on a simple two-band model. The model includes an uncorrelated and dispersive band hybridized with a second band which is narrow and correlated. The simplest Hamiltonian containing these ingredients is the Periodic Anderson Model (PAM). Using quantum Monte Carlo and analytical methods, we show that the PAM and an extension of it contain the new mechanism and exhibit a non-saturated ferromagnetic ground state in the intermediate valence regime. We propose that the mechanism, which does not assume an intra atomic Hund's coupling, is present in both the iron group and in some f electron compounds like Ce(Rh_{1-x} Ru_x)_3 B_2, La_x Ce_{1-x} Rh_3 B_2 and the uranium monochalcogenides US, USe, and UTe

    SMARTPOP: Inferring the impact of social dynamics on genetic diversity through high speed simulations

    Get PDF
    Background: Social behavior has long been known to influence patterns of genetic diversity, but the effect of social processes on population genetics remains poorly quantified - partly due to limited community-level genetic sampling (which is increasingly being remedied), and partly to a lack of fast simulation software to jointly model genetic evolution and complex social behavior, such as marriage rules.Results: To fill this gap, we have developed SMARTPOP - a fast, forward-in-time genetic simulator - to facilitate large-scale statistical inference on interactions between social factors, such as mating systems, and population genetic diversity. By simultaneously modeling genetic inheritance and dynamic social processes at the level of the individual, SMARTPOP can simulate a wide range of genetic systems (autosomal, X-linked, Y chromosomal and mitochondrial DNA) under a range of mating systems and demographic models. Specifically designed to enable resource-intensive statistical inference tasks, such as Approximate Bayesian Computation, SMARTPOP has been coded in C++ and is heavily optimized for speed and reduced memory usage.Conclusion: SMARTPOP rapidly simulates population genetic data under a wide range of demographic scenarios and social behaviors, thus allowing quantitative analyses to address complex socio-ecological questions. © 2014 Guillot and Cox; licensee BioMed Central Ltd

    Complex genetic patterns in human arise from a simple range-expansion model over continental landmasses

    Get PDF
    © 2018 Kanitz et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Although it is generally accepted that geography is a major factor shaping human genetic differentiation, it is still disputed how much of this differentiation is a result of a simple process of isolation-by-distance, and if there are factors generating distinct clusters of genetic similarity. We address this question using a geographically explicit simulation framework coupled with an Approximate Bayesian Computation approach. Based on six simple summary statistics only, we estimated the most probable demographic parameters that shaped modern human evolution under an isolation by distance scenario, and found these were the following: an initial population in East Africa spread and grew from 4000 individuals to 5.7 million in about 132 000 years. Subsequent simulations with these estimates followed by cluster analyses produced results nearly identical to those obtained in real data. Thus, a simple diffusion model from East Africa explains a large portion of the genetic diversity patterns observed in modern humans. We argue that a model of isolation by distance along the continental landmasses might be the relevant null model to use when investigating selective effects in humans and probably many other species

    Annual Risk of Tuberculous Infection Using Different Methods in Communities with a High Prevalence of TB and HIV in Zambia and South Africa

    Get PDF
    BACKGROUND: The annual risk of tuberculous infection (ARTI) is a key epidemiological indicator of the extent of transmission in a community. Several methods have been suggested to estimate the prevalence of tuberculous infection using tuberculin skin test data. This paper explores the implications of using different methods to estimate prevalence of infection and ARTI. The effect of BCG vaccination on these estimates is also investigated. METHODOLOGY/PRINCIPAL FINDINGS: Tuberculin surveys among school children in 16 communities in Zambia and 8 in South Africa (SA) were performed in 2005, as part of baseline data collection and for randomisation purposes of the ZAMSTAR study. Infection prevalence and ARTI estimates were calculated using five methods: different cut-offs with or without adjustments for sensitivity, the mirror method, and mixture analysis. A total of 49,835 children were registered for the surveys, of which 25,048 (50%) had skin tests done and 22,563 (90%) of those tested were read. Infection prevalence was higher in the combined SA than Zambian communities. The mirror method resulted in the least difference of 7.8%, whereas that estimated by the cut-off methods varied from 12.2% to 17.3%. The ARTI in the Zambian and SA communities was between 0.8% and 2.8% and 2.5% and 4.2% respectively, depending on the method used. In the SA communities, the ARTI was higher among the younger children. BCG vaccination had little effect on these estimates. CONCLUSIONS/SIGNIFICANCE: ARTI estimates are dependent on the calculation method used. All methods agreed that there were substantial differences in infection prevalence across the communities, with higher rates in SA. Although TB notification rates have increased over the past decades, the difference in cumulative exposure between younger and older children is less dramatic and a rise in risk of infection in parallel with the estimated incidence of active tuberculosis cannot be excluded

    A phase 1 trial of the safety, tolerability and biological effects of intravenous Enadenotucirev, a novel oncolytic virus, in combination with chemoradiotherapy in locally advanced rectal cancer (CEDAR)

    Get PDF
    Background: Chemoradiotherapy remains the standard of care for locally advanced rectal cancer. Efforts to intensify treatment and increase response rates have yet to yield practice changing results due to increased toxicity and/or absence of increased radiosensitization. Enadenotucirev (EnAd) is a tumour selective, oncolytic adenovirus which can be given intravenously. Pre-clinical evidence of synergy with radiation warrants further clinical testing and assessment of safety with radiation. Methods: Eligibility include histology confirmed locally advanced rectal cancer that require chemoradiation. The trial will use a Time-to-Event Continual Reassessment Model-based (TiTE-CRM) approach using toxicity and efficacy as co-primary endpoints to recommend the optimal dose and treatment schedule 30 patients will be recruited. Secondary endpoints include pathological complete response the neoadjuvant rectal score. A translational program will be based on a mandatory biopsy during the second week of treatment for ‘proof-of-concept’ and exploration of mechanism. The trial opened to recruitment in July 2019, at an expected rate of 1 per month for up to 4 years. Discussion: Chemoradiation with Enadenotucirev as a radiosensitiser in locally Advanced Rectal cancer (CEDAR) is a prospective multicentre study testing a new paradigm in radiosensitization in rectal cancer. The unique ability of EnAd to selectively infect tumour cells following intravenous delivery is an exciting opportunity with a clear translational goal. The novel statistical design will make efficient use of both toxicity and efficacy data to inform subsequent studies. Trial registration: ClinicalTrial.gov, NCT03916510. Registered 16th April 2019

    DPM, a fast, accurate Monte Carlo code optimized for photon and electron radiotherapy treatment planning dose calculations

    Full text link
    A new Monte Carlo (MC) algorithm, the `dose planning method' (DPM), and its associated computer program for simulating the transport of electrons and photons in radiotherapy class problems employing primary electron beams, is presented. DPM is intended to be a high-accuracy MC alternative to the current generation of treatment planning codes which rely on analytical algorithms based on an approximate solution of the photon/electron Boltzmann transport equation. For primary electron beams, DPM is capable of computing 3D dose distributions (in 1 mm3 voxels) which agree to within 1% in dose maximum with widely used and exhaustively benchmarked general-purpose public-domain MC codes in only a fraction of the CPU time. A representative problem, the simulation of 1 million 10 MeV electrons impinging upon a water phantom of 1283 voxels of 1 mm on a side, can be performed by DPM in roughly 3 min on a modern desktop workstation. DPM achieves this performance by employing transport mechanics and electron multiple scattering distribution functions which have been derived to permit long transport steps (of the order of 5 mm) which can cross heterogeneity boundaries. The underlying algorithm is a `mixed' class simulation scheme, with differential cross sections for hard inelastic collisions and bremsstrahlung events described in an approximate manner to simplify their sampling. The continuous energy loss approximation is employed for energy losses below some predefined thresholds, and photon transport (including Compton, photoelectric absorption and pair production) is simulated in an analogue manner. The δ-scattering method (Woodcock tracking) is adopted to minimize the computational costs of transporting photons across voxels.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/48969/2/m00815.pd

    Allylic Oxidation of Alkenes Catalyzed by a Copper−Aluminum Mixed Oxide

    Get PDF
    A strategy for the allylic oxidation of cyclic alkenes with a copper−aluminum mixed oxide as catalyst is presented. The reaction involves the treatment of an alkene with a carboxylic acid employing tert-butyl hydroperoxide as the oxidant. In all cases, the corresponding allylic esters are obtained. When L-proline is employed, the allylic alcohol or ketone is obtained. The oxidation of cyclohexene and valencene has been optimized by design of experiments (DoE) statistical methodology

    Pentafluorosulfanyl (SF(5)) as a superior (19)F magnetic resonance reporter group: signal detection and biological activity of teriflunomide derivatives

    Get PDF
    Fluorine ((19)F) magnetic resonance imaging (MRI) is severely limited by a low signal-to noise ratio (SNR), and tapping it for (19)F drug detection in vivo still poses a significant challenge. However, it bears the potential for label-free theranostic imaging. Recently, we detected the fluorinated dihydroorotate dehydrogenase (DHODH) inhibitor teriflunomide (TF) noninvasively in an animal model of multiple sclerosis (MS) using (19)F MR spectroscopy (MRS). In the present study, we probed distinct modifications to the CF(3) group of TF to improve its SNR. This revealed SF(5) as a superior alternative to the CF(3) group. The value of the SF(5) bioisostere as a (19)F MRI reporter group within a biological or pharmacological context is by far underexplored. Here, we compared the biological and pharmacological activities of different TF derivatives and their (19)F MR properties (chemical shift and relaxation times). The (19)F MR SNR efficiency of three MRI methods revealed that SF(5)-substituted TF has the highest (19)F MR SNR efficiency in combination with an ultrashort echo-time (UTE) MRI method. Chemical modifications did not reduce pharmacological or biological activity as shown in the in vitro dihydroorotate dehydrogenase enzyme and T cell proliferation assays. Instead, SF(5)-substituted TF showed an improved capacity to inhibit T cell proliferation, indicating better anti-inflammatory activity and its suitability as a viable bioisostere in this context. This study proposes SF(5) as a novel superior (19)F MR reporter group for the MS drug teriflunomide
    corecore