1,344 research outputs found

    Quasar Parallax: a Method for Determining Direct Geometrical Distances to Quasars

    Full text link
    We describe a novel method to determine direct geometrical distances to quasars that can measure the cosmological constant, Lambda, with minimal assumptions. This method is equivalent to geometric parallax, with the `standard length' being the size of the quasar broad emission line region (BELR) as determined from the light travel time measurements of reverberation mapping. The effect of non-zero Lambda on angular diameter is large, 40% at z=2, so mapping angular diameter distances vs. redshift will give Lambda with (relative) ease. In principle these measurements could be made in the UV, optical, near infrared or even X-ray bands. Interferometers with a resolution of 0.01mas are needed to measure the size of the BELR in z=2 quasars, which appear plausible given reasonable short term extrapolations of current technology.Comment: 13 pages, with 3 figures. ApJ Letters, in press (Dec 20, 2002

    A view of the narrow-line region in the infrared: active galactic nuclei with resolved fine-structure lines in the Spitzer archive

    Get PDF
    We queried the Spitzer archive for high-resolution observations with the Infrared Spectrograph of optically selected active galactic nuclei (AGN) for the purpose of identifying sources with resolved fine-structure lines that would enable studies of the narrow-line region (NLR) at mid-infrared wavelengths. By combining 298 Spitzer spectra with 6 Infrared Space Observatory spectra, we present kinematic information of the NLR for 81 z<=0.3 AGN. We used the [NeV], [OIV], [NeIII], and [SIV] lines, whose fluxes correlate well with each other, to probe gas photoionized by the AGN. We found that the widths of the lines are, on average, increasing with the ionization potential of the species that emit them. No correlation of the line width with the critical density of the corresponding transition was found. The velocity dispersion of the gas, sigma, is systematically higher than that of the stars, sigma_*, in the AGN host galaxy, and it scales with the mass of the central black hole, M_BH. Further correlations between the line widths and luminosities L, and between L and M_BH, are suggestive of a three dimensional plane connecting log(M_BH) to a linear combination of log(sigma) and log(L). Such a plane can be understood within the context of gas motions that are driven by AGN feedback mechanisms, or virialized gas motions with a power-law dependence of the NLR radius on the AGN luminosity. The M_BH estimates obtained for 35 type 2 AGN from this plane are consistent with those obtained from the M_BH-sigma_* relation.Comment: ApJ, revised to match the print versio

    Reversible Eu<sup>2+</sup> ↔ Eu<sup>3+</sup> transitions at Eu‐Si interfaces

    Get PDF
    Valence switching at Eu‐Si interfaces is demonstrated by resonant photoemission during repeated oxidation‐reduction cycles performed by room‐temperature O2 exposure and mild heating. The Eu2+ ↔ Eu3+ transitions are accompanied by Fermi level switching associated with changes in the stoichiometry of the surface heterostructure. The ability to cycle between two well‐defined magnetic states at a surface may be attractive in technological applications

    XMM-Newton RGS observation of the warm absorber in Mrk 279

    Full text link
    The Seyfert 1 galaxy Mrk 279 was observed by XMM-Newton in November 2005 in three consecutive orbits, showing significant short-scale variability (average soft band variation in flux ~20%). The source is known to host a two-component warm absorber with distinct ionisation states from a previous Chandra observation. We aim to study the warm absorber in Mrk 279 and investigate any possible response to the short-term variations of the ionising flux, and to assess whether it has varied on a long-term time scale with respect to the Chandra observation. We find no significant changes in the warm absorber on neither short time scales (~2 days) nor at longer time scales (two and a half years), as the variations in the ionic column densities of the most relevant elements are below the 90% confidence level. The variations could still be present but are statistically undetected given the signal-to-noise ratio of the data. Starting from reasonable standard assumptions we estimate the location of the absorbing gas, which is likely to be associated with the putative dusty torus rather than with the Broad Line Region if the outflowing gas is moving at the escape velocity or larger.Comment: 10 pages, 9 figures, 6 tables. Accepted for publication in Astronomy & Astrophysic

    High-ionization mid-infrared lines as black hole mass and bolometric luminosity indicators in active galactic nuclei

    Get PDF
    We present relations of the black hole mass and the optical luminosity with the velocity dispersion and the luminosity of the [Ne V] and the [O IV] high-ionization lines in the mid-infrared (MIR) for 28 reverberation-mapped active galactic nuclei. We used high-resolution Spitzer Infrared Spectrograph and Infrared Space Observatory Short Wavelength Spectrometer data to fit the profiles of these MIR emission lines that originate from the narrow-line region of the nucleus. We find that the lines are often resolved and that the velocity dispersion of [Ne V] and [O IV] follows a relation similar to that between the black hole mass and the bulge stellar velocity dispersion found for local galaxies. The luminosity of the [Ne V] and the [O IV] lines in these sources is correlated with that of the optical 5100A continuum and with the black hole mass. Our results provide a means to derive black hole properties in various types of active galactic nuclei, including highly obscured systems.Comment: accepted for publication in ApJ

    Modeling Variable Emission Lines in AGNs: Method and Application to NGC 5548

    Get PDF
    We present a new scheme for modeling the broad line region in active galactic nuclei (AGNs). It involves photoionization calculations of a large number of clouds, in several pre-determined geometries, and a comparison of the calculated line intensities with observed emission line light curves. Fitting several observed light curves simultaneously provides strong constraints on model parameters such as the run of density and column density across the nucleus, the shape of the ionizing continuum, and the radial distribution of the emission line clouds. When applying the model to the Seyfert 1 galaxy NGC 5548, we were able to reconstruct the light curves of four ultraviolet emission-lines, in time and in absolute flux. This has not been achieved by any previous work. We argue that the Balmer lines light curves, and possibly also the MgII2798 light curve, cannot be tested in this scheme because of the limitations of present-day photoionization codes. Our fit procedure can be used to rule out models where the particle density scales as r^{-2}, where r is the distance from the central source. The best models are those where the density scales as r^{-1} or r^{-1.5}. We can place a lower limit on the column density at a distance of 1 ld, of N_{col}(r=1) >~ 10^{23} cm^{-2} and limit the particle density to be in the range of 10^{12.5}>N(r=1)>10^{11} cm^{-3}. We have also tested the idea that the spectral energy distribution (SED) of the ionizing continuum is changing with continuum luminosity. None of the variable-shape SED tried resulted in real improvement over a constant SED case although models with harder continuum during phases of higher luminosity seem to fit better the observed spectrum. Reddening and/or different composition seem to play a minor role, at least to the extent tested in this work.Comment: 12 pages, including 9 embedded EPS figures, accepted for publication in Ap

    The Relationship Between Luminosity and Broad-Line Region Size in Active Galactic Nuclei

    Get PDF
    We reinvestigate the relationship between the characteristic broad-line region size (R_blr) and the Balmer emission-line, X-ray, UV, and optical continuum luminosities. Our study makes use of the best available determinations of R_blr for a large number of active galactic nuclei (AGNs) from Peterson et al. Using their determinations of R_blr for a large sample of AGNs and two different regression methods, we investigate the robustness of our correlation results as a function of data sub-sample and regression technique. Though small systematic differences were found depending on the method of analysis, our results are generally consistent. Assuming a power-law relation R_blr \propto L^\alpha, we find the mean best-fitting \alpha is about 0.67+/-0.05 for the optical continuum and the broad H\beta luminosity, about 0.56+/-0.05 for the UV continuum luminosity, and about 0.70+/-0.14 for the X-ray luminosity. We also find an intrinsic scatter of about 40% in these relations. The disagreement of our results with the theoretical expected slope of 0.5 indicates that the simple assumption of all AGNs having on average same ionization parameter, BLR density, column density, and ionizing spectral energy distribution, is not valid and there is likely some evolution of a few of these characteristics along the luminosity scale.Comment: 11 pages, 2 figures, emulateapj, accepted for publication in The Astrophysical Journa
    • 

    corecore