23 research outputs found

    Strategies for Accelerating the Development of Catalytic Enantioselective Reactions

    Get PDF
    The development of enantioselective catalytic processes for the manufacture of chiral intermediates is a very complex endeavor and can be very time consuming and expensive. In this contribution the major issues which might lead to long development times will be discussed and strategies to deal with these problems are described. The general part is illustrated with the approach Solvias has chosen for assisting and supporting the development of enantioselective homogeneous hydrogenation processes, at the moment the most important industrial application of asymmetric catalysis. Special emphasis is given to the application of high-throughput screening (HTS) using a Symyx HiP system and the description of the Solvias portfolio of chiral ligands which makes a broad variety of diphosphine ligands available for all phases of process development from the first screening experiments to the large-scale manufacturing phase. Four case histories serve to illustrate the generic description of the development process

    Challenges and Rewards in Medicinal Chemistry Targeting Cardiovascular and Metabolic Diseases

    Get PDF
    Medicinal chemistry has been transformed by major technological and conceptual innovations over the last three decades: structural biology and bioinformatics, structure and property based molecular design, the concepts of multidimensional optimization (MDO), in silico and experimental high-throughput molecular property analysis. The novel technologies advanced gradually and in synergy with biology and Roche has been at the forefront. Applications in drug discovery programs towards new medicines in cardiovascular and metabolic diseases are highlighted to show impact and advancement: the early discovery of endothelin antagonists for endothelial dysfunction (Bosentan), 11-beta hydroxysteroid dehydrogenase (11?-HSD1) inhibitors for dysregulated cellular glucocorticoid tonus (type 2 diabetes and metabolic syndrome) and non-covalent hormone sensitive lipase (HSL) inhibitors to study the scope of direct inhibition of lipolysis in the conceptual frame of lipotoxicity and type 2 diabetes

    Detection of cannabinoid receptor type 2 in native cells and zebrafish with a highly potent, cell-permeable fluorescent probe.

    Get PDF
    Despite its essential role in the (patho)physiology of several diseases, CB2R tissue expression profiles and signaling mechanisms are not yet fully understood. We report the development of a highly potent, fluorescent CB2R agonist probe employing structure-based reverse design. It commences with a highly potent, preclinically validated ligand, which is conjugated to a silicon-rhodamine fluorophore, enabling cell permeability. The probe is the first to preserve interspecies affinity and selectivity for both mouse and human CB2R. Extensive cross-validation (FACS, TR-FRET and confocal microscopy) set the stage for CB2R detection in endogenously expressing living cells along with zebrafish larvae. Together, these findings will benefit clinical translatability of CB2R based drugs

    Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples

    No full text
    Funder: NCI U24CA211006Abstract: The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) curated consensus somatic mutation calls using whole exome sequencing (WES) and whole genome sequencing (WGS), respectively. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2,658 cancers across 38 tumour types, we compare WES and WGS side-by-side from 746 TCGA samples, finding that ~80% of mutations overlap in covered exonic regions. We estimate that low variant allele fraction (VAF < 15%) and clonal heterogeneity contribute up to 68% of private WGS mutations and 71% of private WES mutations. We observe that ~30% of private WGS mutations trace to mutations identified by a single variant caller in WES consensus efforts. WGS captures both ~50% more variation in exonic regions and un-observed mutations in loci with variable GC-content. Together, our analysis highlights technological divergences between two reproducible somatic variant detection efforts

    Ligand-Based Combinatorial Design of Selective Purinergic Receptor (A 2A

    No full text

    Lead Generation: Sowing the Seeds for Future Success

    Get PDF
    Lead generation and the associated hit-to-lead process are key strategic elements in modern pharmaceutical research, and most companies have implemented this concept. Efficient lead generation is one of the main attempts to reduce the high attrition rates observed along the drug discovery process by focussing on the early developmental phases. The level of integration of the lead generation activities within the discovery organization, the flexibility in assessing and implementing new chemistries and new technologies, the high-quality standards set for the identification of the best possible chemical lead series will ultimately determine the future success in discovering new medicines

    Histamine-3 Receptor Inverse Agonists for the Treatment of Obesity: Validation of the Target and Identification of Novel Series

    Get PDF
    Obesity is a major risk factor for the development of conditions such as hypertension, hyperglycemia, dyslipidemia, coronary artery disease and cancer. Several pieces of evidence, including data in primates, have demonstrated the beneficial effects of histamine-3 receptor (H 3 R) inverse agonists in the regulation of food intake and body weight. A pharmacophore model based on selected published H 3 R ligands and validated by previ- ous investigations, was used to identify the 5-oxy-2-carboxamide-indole core as a novel series of H 3 R inverse agonists. Extensive structure-activity relationship (SAR) investigations were rewarded by the identification of several compounds reversing ( R )- α -methyl-histamine-induced water intake increase and reducing food intake/ body weight in rodent models of obesity. Among those compounds, (4,4-difluoro-piperidin-1-yl)-[1-isopropyl-5- (1-isopropyl-piperidin-4-yloxy)-1 H -indol-2-yl]-methanone, selected as a lead compound, was exhibiting a prom- ising profile, including excellent pharmacokinetic properties, good in vitro safety profile and high efficacy in a chronic rodent model of obesity

    5-hydroxyindole-2-carboxylic acid amides: novel histamine-3 receptor inverse agonists for the treatment of obesity

    No full text
    Obesity is a major risk factor in the development of conditions such as hypertension, hyperglycemia, dyslipidemia, coronary artery disease, and cancer. Several pieces of evidence across different species, including primates, underscore the implication of the histamine 3 receptor (H(3)R) in the regulation of food intake and body weight and the potential therapeutic effect of H(3)R inverse agonists. A pharmacophore model, based on public information and validated by previous investigations, was used to design several potential scaffolds. Out of these scaffolds, the 5-hydroxyindole-2-carboxylic acid amide appeared to be of great potential as a novel series of H(3)R inverse agonist. Extensive structure-activity relationships revealed the interconnectivity of microsomal clearance and hERG (human ether-a-go-go-related gene) affinity with lipophilicity, artificial membrane permeation, and basicity. This effort led to the identification of compounds reversing the (R)-alpha-methylhistamine-induced water intake increase in Wistar rats and, further, reducing food intake in diet-induced obese Sprague-Dawley rats. Of these, the biochemical, pharmacokinetic, and pharmacodynamic characteristics of (4,4-difluoropiperidin-1-yl)[1-isopropyl-5-(1-isopropylpiperidin-4-yloxy)-1H-indol-2-yl]methanone 36 are detailed

    6‑Alkoxy-5-aryl-3-pyridinecarboxamides, a New Series of Bioavailable Cannabinoid Receptor Type 1 (CB1) Antagonists Including Peripherally Selective Compounds

    No full text
    We identified 6-alkoxy-5-aryl-3-pyridinecarboxamides as potent CB1 receptor antagonists with high selectivity over CB2 receptors. The series was optimized to reduce lipophilicity compared to rimonabant to achieve peripherally active molecules with minimal central effects. Several compounds that showed high plasma exposures in rats were evaluated in vivo to probe the contribution of central vs peripheral CB1 agonism to metabolic improvement. Both rimonabant and <b>14g</b>, a potent brain penetrant CB1 receptor antagonist, significantly reduced the rate of body weight gain. However, <b>14h</b>, a molecule with markedly reduced brain exposure, had no significant effect on body weight. PK studies confirmed similarly high exposure of both <b>14h</b> and <b>14g</b> in the periphery but 10-fold lower exposure in the brain for <b>14h</b>. On the basis of these data, which are consistent with reported effects in tissue-specific CB1 receptor KO mice, we conclude that the metabolic benefits of CB1 receptor antagonists are primarily centrally mediated as originally believed
    corecore