134 research outputs found
Reproducibility of bone mineral density measurement in daily practice.
BACKGROUND: Bone mineral density (BMD) measurements are frequently performed repeatedly for each patient. Subsequent BMD measurements allow reproducibility to be assessed. OBJECTIVE: To examine the reproducibility of BMD by dual energy x ray absorptiometry (DXA) and to investigate the practical value of different measures of reproducibility in a group of postmenopausal women. METHODS: Ninety five women, mean age 59.9 years, underwent two subsequent BMD measurements of spine and hip. Reproducibility was expressed as smallest detectable difference (SDD), coefficient of variation (CV), and intraclass correlation coefficient (ICC). Sources of variation were investigated by multilevel analysis. RESULTS: The median interval between measurements was 0 days (range 0-45). The mean difference (SD) between the measurements (g/cm(2)) was -0.001 (0.02) and -0.0004 (0.02) at L1-4 and the total hip, respectively. At L1-4 and the total hip, SDD (g/cm(2)) was +/-0.05 and +/-0.04 and CV (%) was 1.92 and 1.59, respectively. The ICC at spine and hip was 0.99. CONCLUSIONS: Reproducibility in the postmenopausal women studied was good. In a repeated DXA scan a BMD change exceeding 2 radical 2CV (%), the least significant change (LSC), or the SDD should be regarded as significant. Use of the SDD is preferable to use of the CV and LSC (%) because of its independence from BMD and its expression in absolute units. Expressed as SDD, a BMD change of at least +/-0.05 g/cm(2) at L1-4 and +/-0.04 g/cm(2) at the total hip should be considered significant
Fibrodysplasia Ossificans Progressiva: what have we achieved and where are we now? follow-up to the 2015 Lorentz Workshop
Fibrodysplasia ossificans progressiva (FOP) is an ultra-rare progressive genetic disease effecting one in a million individuals. During their life, patients with FOP progressively develop bone in the soft tissues resulting in increasing immobility and early death. A mutation in the ACVR1 gene was identified as the causative mutation of FOP in 2006. After this, the pathophysiology of FOP has been further elucidated through the efforts of research groups worldwide. In 2015, a workshop was held to gather these groups and discuss the new challenges in FOP research. Here we present an overview and update on these topics
When, where and how osteoporosis-associated fractures occur: An analysis from the global longitudinal study of osteoporosis in women (GLOW)
Objective: To examine when, where and how fractures occur in postmenopausal women. Methods: We analyzed data from the Global Longitudinal Study of Osteoporosis in Women (GLOW), including women aged ≥55 years from the United States of America, Canada, Australia and seven European countries. Women completed questionnaires including fracture data at baseline and years 1, 2 and 3. Results: Among 60,393 postmenopausal women, 4122 incident fractures were reported (86% non-hip, non-vertebral [NHNV], 8% presumably clinical vertebral and 6% hip). Hip fractures were more likely to occur in spring, with little seasonal variation for NHNV or spine fractures. Hip fractures occurred equally inside or outside the home, whereas 65% of NHNV fractures occurred outside and 61% of vertebral fractures occurred inside the home. Falls preceded 68-86% of NHNV and 68-83% of hip fractures among women aged ≤64 to ≥85 years, increasing with age. About 45% of vertebral fractures were associated with falls in all age groups except those ≥85 years, when only 24% occurred after falling. Conclusion: In this multi-national cohort, fractures occurred throughout the year, with only hip fracture having a seasonal variation, with a higher proportion in spring. Hip fractures occurred equally within and outside the home, spine fractures more often in the home, and NHNV fractures outside the home. Falls were a proximate cause of most hip and NHNV fractures. Postmenopausal women at risk for fracture need counseling about reducing potentially modifiable fracture risk factors, particularly falls both inside and outside the home and during all seasons of the year. © 2013 Costa et al
Special considerations for clinical trials in fibrodysplasia ossificans progressiva (FOP).
Clinical trials for orphan diseases are critical for developing effective therapies. One such condition, fibrodysplasia ossificans progressiva (FOP; MIM#135100), is characterized by progressive heterotopic ossification (HO) that leads to severe disability. Individuals with FOP are extremely sensitive to even minor traumatic events. There has been substantial recent interest in clinical trials for novel and urgently-needed treatments for FOP. The International Clinical Council on FOP (ICC) was established in 2016 to provide consolidated and coordinated advice on the best practices for clinical care and clinical research for individuals who suffer from FOP. The Clinical Trials Committee of the ICC developed a focused list of key considerations that encompass the specific and unique needs of the FOP community - considerations that are endorsed by the entire ICC. These considerations complement established protocols for developing and executing robust clinical trials by providing a foundation for helping to ensure the safety of subjects with FOP in clinical research trials
Gene Therapy for Fibrodysplasia Ossificans Progressiva: Feasibility and Obstacles
Fibrodysplasia ossificans progressiva (FOP) is a rare and devastating genetic disease, in which soft connective tissue is converted into heterotopic bone through an endochondral ossification process. Patients succumb early as they gradually become trapped in a second skeleton of heterotopic bone. Although the underlying genetic defect is long known, the inherent complexity of the disease has hindered the discovery of effective preventions and treatments. New developments in the gene therapy field have motivated its consideration as an attractive therapeutic option for FOP. However, the immune system\u27s role in FOP activation and the as-yet unknown primary causative cell, are crucial issues which must be taken into account in the therapy design. While gene therapy offers a potential therapeutic solution, more knowledge about FOP is needed to enable its optimal and safe application
Fibrodysplasia ossificans progressiva: what have we achieved and where are we now?: Follow-up to the 2015 Lorentz workshop
Fibrodysplasia ossificans progressiva (FOP) is an ultra-rare progressive genetic disease effecting one in a million individuals. During their life, patients with FOP progressively develop bone in the soft tissues resulting in increasing immobility and early death. A mutation in the ACVR1 gene was identified as the causative mutation of FOP in 2006. After this, the pathophysiology of FOP has been further elucidated through the efforts of research groups worldwide. In 2015, a workshop was held to gather these groups and discuss the new challenges in FOP research. Here we present an overview and update on these topics.Diabetes mellitus: pathophysiological changes and therap
- …