118 research outputs found
Congenital imprinting disorders: EUCID.net - a network to decipher their aetiology and to improve the diagnostic and clinical care.
Imprinting disorders (IDs) are a group of eight rare but probably underdiagnosed congenital diseases affecting growth, development and metabolism. They are caused by similar molecular changes affecting regulation, dosage or the genomic sequence of imprinted genes. Each ID is characterised by specific clinical features, and, as each appeared to be associated with specific imprinting defects, they have been widely regarded as separate entities. However, they share clinical characteristics and can show overlapping molecular alterations. Nevertheless, IDs are usually studied separately despite their common underlying (epi)genetic aetiologies, and their basic pathogenesis and long-term clinical consequences remain largely unknown. Efforts to elucidate the aetiology of IDs are currently fragmented across Europe, and standardisation of diagnostic and clinical management is lacking. The new consortium EUCID.net (European network of congenital imprinting disorders) now aims to promote better clinical care and scientific investigation of imprinting disorders by establishing a concerted multidisciplinary alliance of clinicians, researchers, patients and families. By encompassing all IDs and establishing a wide ranging and collaborative network, EUCID.net brings together a wide variety of expertise and interests to engender new collaborations and initiatives
Recent Advances in Imprinting Disorders.
Imprinting disorders (ImpDis) are a group of currently 12 congenital diseases with common underlying (epi)genetic etiologies and overlapping clinical features affecting growth, development and metabolism. In the last years it has emerged that ImpDis are characterized by the same types of mutations and epimutations, i.e. uniparental disomies, copy number variations, epimutations, and point mutations. Each ImpDis is associated with a specific imprinted locus, but the same imprinted region can be involved in different ImpDis. Additionally, even the same aberrant methylation patterns are observed in different phenotypes. As some ImpDis share clinical features, clinical diagnosis is difficult in some cases. The advances in molecular and clinical diagnosis of ImpDis help to circumvent these issues, and they are accompanied by an increasing understanding of the pathomechanism behind them. As these mechanisms have important roles for the etiology of other common conditions, the results in ImpDis research have a wider effect beyond the borders of ImpDis. For patients and their families, the growing knowledge contributes to a more directed genetic counseling of the families and personalized therapeutic approaches.COST (BM1208), Bundesministerium für Bildung und Forschung (Network ‘Imprinting Diseases’, 01GM1513B), German Ministry of research and education (01GM1513B)This is the author accepted manuscript. The final version is available from Wiley via http://dx.doi.org/10.1111/cge.1282
Congenital imprinting disorders: EUCID.net - a network to decipher their aetiology and to improve the diagnostic and clinical care
Imprinting disorders (IDs) are a group of eight rare but probably underdiagnosed congenital diseases affecting growth, development and metabolism. They are caused by similar molecular changes affecting regulation, dosage or the genomic sequence of imprinted genes. Each ID is characterised by specific clinical features, and, as each appeared to be associated with specific imprinting defects, they have been widely regarded as separate entities. However, they share clinical characteristics and can show overlapping molecular alterations. Nevertheless, IDs are usually studied separately despite their common underlying (epi) genetic aetiologies, and their basic pathogenesis and long-term clinical consequences remain largely unknown. Efforts to elucidate the aetiology of IDs are currently fragmented across Europe, and standardisation of diagnostic and clinical management is lacking. The new consortium EUCID.net (European network of congenital imprinting disorders) now aims to promote better clinical care and scientific investigation of imprinting disorders by establishing a concerted multidisciplinary alliance of clinicians, researchers, patients and families. By encompassing all IDs and establishing a wide ranging and collaborative network, EUCID.net brings together a wide variety of expertise and interests to engender new collaborations and initiatives
Adult case of partial trisomy 9q
Background: \ud
Complete and partial trisomy 9 is the fourth most common chromosomal disorder. It is also associated with various congenital characteristics affecting the cranio-facial, skeletal, central nervous, gastrointestinal, cardiac and renal systems. Very few cases have been reported in adults. Partial trisomy 9q is also associated with short stature, poor growth and growth hormone deficiency. This is the first reported case of an extensive endocrinology investigation of short stature in trisomy 9q and the outcome of growth hormone treatment.\ud
\ud
Case Presentation: \ud
The case involves a 23-year-old female of pure partial trisomy 9q. The case involves a 23-year old female with pure partial trisomy 9q involving a duplication of 9q22.1 to q32, de novo, confirmed by genetic studies using fluorescene in situ hybridization (FISH) method. The diagnosis was at 6 years of age. She did not demonstrate all the congenital morphologies identified with trisomy 9q disorders especially in relation to multi-organ morphologies. There is also a degree of associated intellectual impairment. At prepuberty, she was referred for poor growth and was diagnosed with partial growth hormone deficiency. She responded very well to treatment with growth hormone and is currently living an independent life with some support.\ud
\ud
Conclusions: \ud
Trisomy 9q is associated with short stature and failure to thrive. Growth hormone deficiency should be identified in cases of trisomy 9q and treatment offered. This is the first reported case of response to growth hormone replacement in partial trisomy 9
Imprinting disorders: a group of congenital disorders with overlapping patterns of molecular changes affecting imprinted loci
Congenital imprinting disorders (IDs) are characterised by molecular changes affecting imprinted chromosomal regions and genes, i.e. genes that are expressed in a parent-of-origin specific manner. Recent years have seen a great expansion in the range of alterations in regulation, dosage or DNA sequence shown to disturb imprinted gene expression, and the correspondingly broad range of resultant clinical syndromes. At the same time, however, it has become clear that this diversity of IDs has common underlying principles, not only in shared molecular mechanisms, but also in interrelated clinical impacts upon growth, development and metabolism. Thus, detailed and systematic analysis of IDs can not only identify unifying principles of molecular epigenetics in health and disease, but also support personalisation of diagnosis and management for individual patients and families
Mutation update for the GPC3 gene involved in Simpson-Golabi-Behmel syndrome and review of the literature
Simpson-Golabi-Behmel syndrome (SGBS) is an X-linked multiple congenital anomalies and overgrowth syndrome caused by a defect in the glypican-3 gene (GPC3). Until now, GPC3 mutations have been reported in isolated cases or small series and the global genotypic spectrum of these mutations has never been delineated. In this study, we review the 57 previously described GPC3 mutations and significantly expand this mutational spectrum with the description of 29 novel mutations. Compiling our data and those of the literature, we provide an overview of 86 distinct GPC3 mutations identified in 120 unrelated families, ranging from single nucleotide variations to complex genomic rearrangements and dispersed throughout the entire coding region of GPC3. The vast majority of them are deletions or truncating mutations (frameshift, nonsense mutations) predicted to result in a loss-of-function. Missense mutations are rare and the two which were functionally characterized, impaired GPC3 function by preventing GPC3 cleavage and cell surface addressing respectively. This report by describing for the first time the wide mutational spectrum of GPC3 could help clinicians and geneticists in interpreting GPC3 variants identified incidentally by high-throughput sequencing technologies and also reinforces the need for functional validation of non-truncating mutations (missense, in frame mutations, duplications)
The current landscape of European registries for rare endocrine conditions
Objective
To identify cross-border international registries for rare endocrine conditions that are led from Europe and to understand the extent of engagement with these registries within a network of reference centres (RCs) for rare endocrine conditions.
Methods
Database search of international registries and a survey of RCs in the European Reference Network for rare endocrine conditions (Endo-ERN) with an overall response rate of 82%.
Results
Of the 42 conditions with orphacodes currently covered within Endo-ERN, international registries exist for 32 (76%). Of 27 registries identified in the Orphanet and RD-Connect databases, Endo-ERN RCs were aware of 11 (41%). Of 21 registries identified by the RC, RD-Connect and Orphanet did not have a record of 10 (48%). Of the 29 glucose RCs, the awareness and participation rate in an international registry was highest for rare diabetes at 75 and 56% respectively. Of the 37 sex development RCs, the corresponding rates were highest for disorders of sex development at 70 and 52%. Of the 33 adrenal RCs, the rates were highest for adrenocortical tumours at 68 and 43%. Of the 43 pituitary RCs, the rates were highest for pituitary adenomas at 43 and 29%. Of the 31 genetic tumour RCs, the rates were highest for MEN1 at 26 and 9%. For the remaining conditions, awareness and participation in registries was less than 25%.
Conclusion
Although there is a need to develop new registries for rare endocrine conditions, there is a more immediate need to improve the awareness and participation in existing registries.This publication is part of the project ‘777215/EuRRECa’ which has received funding from the European Union’s Health Programme (2014–2020)
Genetic testing in inherited endocrine disorders: joint position paper of the European reference network on rare endocrine conditions (Endo-ERN)
Background With the development of molecular high-throughput assays (i.e. next generation sequencing), the knowledge on the contribution of genetic and epigenetic alterations to the etiology of inherited endocrine disorders has massively expanded. However, the rapid implementation of these new molecular tools in the diagnostic settings makes the interpretation of diagnostic data increasingly complex. Main body This joint paper of the ENDO-ERN members aims to overview chances, challenges, limitations and relevance of comprehensive genetic diagnostic testing in rare endocrine conditions in order to achieve an early molecular diagnosis. This early diagnosis of a genetically based endocrine disorder contributes to a precise management and helps the patients and their families in their self-determined planning of life. Furthermore, the identification of a causative (epi)genetic alteration allows an accurate prognosis of recurrence risks for family planning as the basis of genetic counselling. Asymptomatic carriers of pathogenic variants can be identified, and prenatal testing might be offered, where appropriate. Conclusions The decision on genetic testing in the diagnostic workup of endocrine disorders should be based on their appropriateness to reliably detect the disease-causing and -modifying mutation, their informational value, and cost-effectiveness. The future assessment of data from differentomicapproaches should be embedded in interdisciplinary discussions using all available clinical and molecular data
- …