101 research outputs found

    Mitochondrial DNA Suggests a Western Eurasian origin for Ancient (Proto-) Bulgarians

    Get PDF
    Ancient (proto-) Bulgarians have long been thought to as a Turkic population. However, evidence found in the past three decades show that this is not the case. Until now, this evidence does not include ancient mitochondrial DNA (mtDNA) analysis. In order to fill this void, we have collected human remains from the VIII-X century AD located in three necropolises in Bulgaria: Nojarevo (Silistra region) and Monastery of Mostich (Shumen region), both in Northeast Bulgaria and Tuhovishte (Satovcha region) in Southwest Bulgaria. The phylogenetic analysis of 13 ancient DNA samples (extracted from teeth) identified 12 independent haplotypes, which we further classified into mtDNA haplogroups found in present-day European and Western Eurasian populations. Our results suggest a Western Eurasian matrilineal origin for proto-Bulgarians as well as a genetic similarity between proto- and modern Bulgarians. Our future work will provide additional data which will further clarify proto-Bulgarian origins; thereby adding new clues to current understanding of European genetic evolution

    Y-Chromosome Diversity in Modern Bulgarians: New Clues about Their Ancestry

    Get PDF
    To better define the structure and origin of the Bulgarian paternal gene pool, we have examined the Y-chromosome variation in 808 Bulgarian males. The analysis was performed by high-resolution genotyping of biallelic markers and by analyzing the STR variation within the most informative haplogroups. We found that the Y-chromosome gene pool in modern Bulgarians is primarily represented by Western Eurasian haplogroups with , 40% belonging to haplogroups E-V13 and I-M423, and 20% to R-M17. Haplogroups common in the Middle East (J and G) and in South Western Asia (R-L23*) occur at frequencies of 19% and 5%, respectively. Haplogroups C, N and Q, distinctive for Altaic and Central Asian Turkic-speaking populations, occur at the negligible frequency of only 1.5%. Principal Component analyses group Bulgarians with European populations, apart from Central Asian Turkic-speaking groups and South Western Asia populations. Within the country, the genetic variation is structured in Western, Central and Eastern Bulgaria indicating that the Balkan Mountains have been permeable to human movements. The lineage analysis provided the following interesting results: (i) R-L23* is present in Eastern Bulgaria since the post glacial period; (ii) haplogroup E-V13 has a Mesolithic age in Bulgaria from where it expanded after the arrival of farming; (iii) haplogroup J-M241 probably reflects the Neolithic westward expansion of farmers from the earliest sites along the Black Sea. On the whole, in light of the most recent historical studies, which indicate a substantial proto-Bulgarian input to the contemporary Bulgarian people, our data suggest that a common paternal ancestry between the proto-Bulgarians and the Altaic and Central Asian Turkic-speaking populations either did not exist or was negligible

    Ancient human mitochondrial genomes from Bronze Age Bulgaria: new insights into the genetic history of Thracians

    Get PDF
    Abstract One of the best documented Indo-European civilizations that inhabited Bulgaria is the Thracians, who lasted for more than five millennia and whose origin and relationships with other past and present-day populations are debated among researchers. Here we report 25 new complete mitochondrial genomes of ancient individuals coming from three necropolises located in different regions of Bulgaria – Shekerdja mogila, Gabrova mogila and Bereketska mogila – dated to II-III millennium BC. The identified mtDNA haplogroup composition reflects the mitochondrial variability of Western Eurasia. In particular, within the ancient Eurasian genetic landscape, Thracians locate in an intermediate position between Early Neolithic farmers and Late Neolithic-Bronze Age steppe pastoralists, supporting the scenario that the Balkan region has been a link between Eastern Europe and the Mediterranean since the prehistoric time. Spatial Principal Component Analysis (sPCA) performed on Thracian and modern mtDNA sequences, confirms the pattern highlighted on ancient populations, overall indicating that the maternal gene pool of Thracians reflects their central geographical position at the gateway of Europe

    The role of recent admixture in forming the contemporary West Eurasian genomic landscape

    Get PDF
    Over the past few years, studies of DNA isolated from human fossils and archaeological remains have generated considerable novel insight into the history of our species. Several landmark papers have described the genomes of ancient humans across West Eurasia, demonstrating the presence of large-scale, dynamic population movements over the last 10,000 years, such that ancestry across present-day populations is likely to be a mixture of several ancient groups [1-7]. While these efforts are bringing the details of West Eurasian prehistory into increasing focus, studies aimed at understanding the processes behind the generation of the current West Eurasian genetic landscape have been limited by the number of populations sampled or have been either too regional or global in their outlook [8-11]. Here, using recently described haplotype-based techniques [11], we present the results of a systematic survey of recent admixture history across Western Eurasia and show that admixture is a universal property across almost all groups. Admixture in all regions except North Western Europe involved the influx of genetic material from outside of West Eurasia, which we date to specific time periods. Within Northern, Western, and Central Europe, admixture tended to occur between local groups during the period 300 to 1200 CE. Comparisons of the genetic profiles of West Eurasians before and after admixture show that population movements within the last 1,500 years are likely to have maintained differentiation among groups. Our analysis provides a timeline of the gene flow events that have generated the contemporary genetic landscape of West Eurasia

    Low dimensional nanostructures of fast ion conducting lithium nitride

    Get PDF
    As the only stable binary compound formed between an alkali metal and nitrogen, lithium nitride possesses remarkable properties and is a model material for energy applications involving the transport of lithium ions. Following a materials design principle drawn from broad structural analogies to hexagonal graphene and boron nitride, we demonstrate that such low dimensional structures can also be formed from an s-block element and nitrogen. Both one- and two-dimensional nanostructures of lithium nitride, Li3N, can be grown despite the absence of an equivalent van der Waals gap. Lithium-ion diffusion is enhanced compared to the bulk compound, yielding materials with exceptional ionic mobility. Li3N demonstrates the conceptual assembly of ionic inorganic nanostructures from monolayers without the requirement of a van der Waals gap. Computational studies reveal an electronic structure mediated by the number of Li-N layers, with a transition from a bulk narrow-bandgap semiconductor to a metal at the nanoscale

    Hepatitis C Virus Infection Epidemiology among People Who Inject Drugs in Europe: A Systematic Review of Data for Scaling Up Treatment and Prevention

    Get PDF
    Background: People who inject drugs (PWID) are a key population affected by hepatitis C virus (HCV). Treatment options are improving and may enhance prevention; however access for PWID may be poor. The availability in the literature of information on seven main topic areas (incidence, chronicity, genotypes, HIV co-infection, diagnosis and treatment uptake, and burden of disease) to guide HCV treatment and prevention scale-up for PWID in the 27 countries of the European Union is systematically reviewed. Methods and Findings: We searched MEDLINE, EMBASE and Cochrane Library for publications between 1 January 2000 and 31 December 2012, with a search strategy of general keywords regarding viral hepatitis, substance abuse and geographic scope, as well as topic-specific keywords. Additional articles were found through structured email consultations with a large European expert network. Data availability was highly variable and important limitations existed in comparability and representativeness. Nine of 27 countries had data on HCV incidence among PWID, which was often high (2.7-66/100 person-years, median 13, Interquartile range (IQR) 8.7–28). Most common HCV genotypes were G1 and G3; however, G4 may be increasing, while the proportion of traditionally ‘difficult to treat’ genotypes (G1+G4) showed large variation (median 53, IQR 43–62). Twelve countries reported on HCV chronicity (median 72, IQR 64–81) and 22 on HIV prevalence in HCV-infected PWID (median 3.9%, IQR 0.2–28). Undiagnosed infection, assessed in five countries, was high (median 49%, IQR 38–64), while of those diagnosed, the proportion entering treatment was low (median 9.5%, IQR 3.5–15). Burden of disease, where assessed, was high and will rise in the next decade. Conclusion: Key data on HCV epidemiology, care and disease burden among PWID in Europe are sparse but suggest many undiagnosed infections and poor treatment uptake. Stronger efforts are needed to improve data availability to guide an increase in HCV treatment among PWID

    Electronic defects in CdSe nanocrystals embedded in GeS2 amorphous matrix

    Get PDF
    Electronic defects in CdSe nanocrystals of a-GeS2/nc-CdSe superlattices and composite films are investigated and compared with results obtained for similar SiOx/CdSe films. A wide band of localized states centred at 0.55 eV below the conduction band edge is seen in both groups of samples and identified with defects in the nanocrystal bulk. A band at similar to 0.7 eV below the conduction band is well resolved in SiOx/CdSe samples but not seen in GeS2/CdSe films. As this feature is ascribed to defects at the CdSe-CdSe interface, a lower density of such defects is assumed in the latter case. In GeS2/CdSe samples a new band located at 0.50 eV below the conduction band appears. It is attributed to defects at the GeS2-CdSe interface. Optical absorption measurements reveal that defect concentration above the valence band of CdSe nanocrystals in GeS2/CdSe samples is lower than in SiOx/CdSe ones. Steady-state photoconductivity of GeS2/CdSe samples shows that at low temperatures the mobility-lifetime product in CdSe nanocrystals decreases with decreasing nanocrystal size. This observation is related to deep defects at the interface of CdSe nanocrystals and reflects the increasing surface to volume ratio

    Effects of thermal annealing and long-term ageing on electronic defects in CdSe thin films

    Get PDF
    Defect distributions in CdSe thin films, 'as deposited', following thermal annealing, and after 10 years' storage under room conditions are investigated. Steady-state photoconductivity measurements at low temperatures suggest a decrease in the density of 'slow' recombination centres following annealing or storage. Transient photocurrent and thermally stimulated current spectroscopics reveal a peak in the density of states at 0.65 eV below the conduction band edge in the as-deposited film. This broadens and shifts towards the conduction band edge on annealing. Stored films exhibit an almost flat defect distribution, which may result from a combination of both types of defect. Raman scattering measurements suggest that both storage and annealing result in increased structural order
    corecore