43 research outputs found

    Chemisorption of a molecular oxygen on the UN (001) surface: ab initio calculations

    Full text link
    The results of DFT GGA calculations on oxygen molecules adsorbed upon the (001) surface of uranium mononitride (UN) are presented and discussed. We demonstrate that O2 molecules oriented parallel to the substrate can dissociate either (i) spontaneously when the molecular center lies above the surface hollow site or atop N ion, (ii) with the activation barrier when a molecule sits atop the surface U ion. This explains fast UN oxidation in air

    High-precision molecular dynamics simulation of UO2-PuO2: Anion self-diffusion in UO2

    Full text link
    Our series of articles is devoted to high-precision molecular dynamics simulation of mixed actinide-oxide (MOX) fuel in the approximation of rigid ions and pair interactions (RIPI) using high-performance graphics processors (GPU). In this article we study self-diffusion mechanisms of oxygen anions in uranium dioxide (UO2) with the ten recent and widely used sets of interatomic pair potentials (SPP) under periodic (PBC) and isolated (IBC) boundary conditions. Wide range of measured diffusion coefficients (from 10^-3 cm^2/s at melting point down to 10^-12 cm^2/s at 1400 K) made possible a direct comparison (without extrapolation) of the simulation results with the experimental data, which have been known only at low temperatures (T < 1500 K). A highly detailed (with the temperature step of 1 K) calculation of the diffusion coefficient allowed us to plot temperature dependences of the diffusion activation energy and its derivative, both of which show a wide (~1000 K) superionic transition region confirming the broad lambda-peaks of heat capacity obtained by us earlier. It is shown that regardless of SPP the anion self-diffusion in model crystals without surface or artificially embedded defects goes on via exchange mechanism, rather than interstitial or vacancy mechanisms suggested by the previous works. The activation energy of exchange diffusion turned out to coincide with the anti-Frenkel defect formation energy calculated by the lattice statics.Comment: 18 pages, 11 figures, 5 table
    corecore