171 research outputs found

    EU-Rotate_N – a decision support system – to predict environmental and economic consequences of the management of nitrogen fertiliser in crop rotations

    Get PDF
    A model has been developed which assesses the economic and environmental performance of crop rotations, in both conventional and organic cropping, for over 70 arable and horticultural crops, and a wide range of growing conditions in Europe. The model, though originally based on the N_ABLE model, has been completely rewritten and contains new routines to simulate root development, the mineralisation and release of nitrogen (N) from soil organic matter and crop residues, and water dynamics in soil. New routines have been added to estimate the effects of sub-optimal rates of N and spacing on the marketable outputs and gross margins. The model provides a mechanism for generating scenarios to represent a range of differing crop and fertiliser management strategies which can be used to evaluate their effects on yield, gross margin and losses of nitrogen through leaching. Such testing has revealed that nitrogen management can be improved and that there is potential to increase gross margins whilst reducing nitrogen losses

    Entwicklung eines zwanglĂ€ufigen Schneid- und Fixiersystems fĂŒr den Einsatz in einem Tapelegekopf

    Get PDF
    Im Rahmen des Bundesxzellenzclusters MERGE EXC 1075 an der TU Chemnitz erfolgte die Entwicklung einer neuartigen großserientauglichen Technologie zur Herstellung faserverstĂ€rkter Thermoplastbauteile. FĂŒr die Demonstration der Technologie wurde eine Pilotanlage realisiert, die zum Ablegen des Thermoplasttapes ĂŒber eine Verlegeeinheit – einen sog. Tapelegekopf – verfĂŒgt. Mit Abschluss des Legeprozesses wird das Halbzeug, das aus einer angebremsten Spule abgezogen wird, abgeschnitten und der Prozess wird von neuem begonnen. FĂŒr das Schneiden des Materials haben Voruntersuchungen gezeigt, dass konturierte Klingen erforderlich sind, um ein Verlaufen des Bandes zu vermeiden. DarĂŒber hinaus hat sich als zweckmĂ€ĂŸig erwiesen eine zusĂ€tzliche Fixierung vorzunehmen. Dies verbessert die SchnittqualitĂ€t und ZuverlĂ€ssigkeit des Systems. Aufgrund enger Bauraumrestriktionen wurde entschieden die Schneidbewegung und das Fixieren zwanglĂ€ufig synchronisiert auf einen Antrieb zurĂŒck zu fĂŒhren. HierfĂŒr wurden zwei ungleichmĂ€ĂŸige Rastgetriebe synthetisiert, ausgelegt sowie in weiteren Entwicklungsstufen auskonstruiert, gefertigt und getestet. Mit der Inbetriebnahme des Gesamtanlagensystems erfolgte ebenfalls der Funktionsnachweis dieses mechanisch zwanglĂ€ufigen Schneidsystems, das im Rahmen des Vortrags vorgestellt wird. Diese Arbeiten entstanden im Rahmen des Bundesexzellenzclusters EXC 1075 „Technologiefusion fĂŒr multifunktionale Leichtbaustrukturen“ und wurde von der Deutschen Forschungsgemeinschaft gefördert. Die Autoren danken fĂŒr die finanzielle UnterstĂŒtzung

    Converting simulated total dry matter to fresh marketable yield for field vegetables at a range of nitrogen supply levels

    Get PDF
    Simultaneous analysis of economic and environmental performance of horticultural crop production requires qualified assumptions on the effect of management options, and particularly of nitrogen (N) fertilisation, on the net returns of the farm. Dynamic soil-plant-environment simulation models for agro-ecosystems are frequently applied to predict crop yield, generally as dry matter per area, and the environmental impact of production. Economic analysis requires conversion of yields to fresh marketable weight, which is not easy to calculate for vegetables, since different species have different properties and special market requirements. Furthermore, the marketable part of many vegetables is dependent on N availability during growth, which may lead to complete crop failure under sub-optimal N supply in tightly calculated N fertiliser regimes or low-input systems. In this paper we present two methods for converting simulated total dry matter to marketable fresh matter yield for various vegetables and European growth conditions, taking into consideration the effect of N supply: (i) a regression based function for vegetables sold as bulk or bunching ware and (ii) a population approach for piecewise sold row crops. For both methods, to be used in the context of a dynamic simulation model, parameter values were compiled from a literature survey. Implemented in such a model, both algorithms were tested against experimental field data, yielding an Index of Agreement of 0.80 for the regression strategy and 0.90 for the population strategy. Furthermore, the population strategy was capable of reflecting rather well the effect of crop spacing on yield and the effect of N supply on product grading

    Agricultural land use changes – a scenario-based sustainability impact assessment for Brandenburg, Germany

    Get PDF
    AbstractDecisions for agricultural management are taken at farm scale. However, such decisions may well impact upon regional sustainability. Two of the likely agricultural management responses to future challenges are extended use of irrigation and increased production of energy crops. The drivers for these are high commodity prices and subsidy policies for renewable energy. However, the impacts of these responses upon regional sustainability are unknown. Thus, we conducted integrated impact assessments for agricultural intensification scenarios in the federal state of Brandenburg, Germany, for 2025. One Irrigation scenario and one Energy scenario were contrasted with the Business As Usual (BAU) scenario. We applied nine indicators to analyze the economic, social and environmental effects at the regional, in this case district scale, which is the smallest administrative unit in Brandenburg. Assessment results were discussed in a stakeholder workshop involving 16 experts from the state government.The simulated area shares of silage maize for fodder and energy were 29%, 37% and 49% for the BAU, Irrigation, and Energy scenarios, respectively. The Energy scenario increased bio-electricity production to 41% of the demand of Brandenburg, and it resulted in CO2 savings of up to 3.5milliontons. However, it resulted in loss of biodiversity, loss of landscape scenery, increased soil erosion risk, and increased area demand for water protection requirements. The Irrigation scenario led to yield increases of 7% (rapeseed), 18% (wheat, sugar beet), and 40% (maize) compared to the BAU scenario. It also reduced the year-to-year yield variability. Water demand for irrigation was found to be in conflict with other water uses for two of the 14 districts. Spatial differentiation of scenario impacts showed that districts with medium to low yield potentials were more affected by negative impacts than districts with high yield potentials.In this first comprehensive sustainability impact assessment of agricultural intensification scenarios at regional level, we showed that a considerable potential for agricultural intensification exists. The intensification is accompanied by adverse environmental and socio-economic impacts. The novelty lies in the multiscale integration of comprehensive, agricultural management simulations with regional level impact assessment, which was achieved with the adequate use of indicators. It provided relevant evidence for policy decision making. Stakeholders appreciated the integrative approach of the assessment, which substantiated ongoing discussions among the government bodies. The assessment approach and the Brandenburg case study may stay exemplary for other regions in the world where similar economic and policy driving forces are likely to lead to agricultural intensification

    Analysing urban heat island patterns and simulating potential future changes

    Get PDF
    Climate change is interpreted as one of the most serious environmental problems for the 21st century. Changes in climate are now generally accepted. However, the rate of change has spatial characteristics and is highly uncertain. The Himalaya is experiencing abrupt change; so vulnerability and adaptation studies have become crucial. This pilot study presents initial findings of the research project entitled ‘Human Ecological Implications of Climate Change in the Himalaya.’ A study of climate change perceptions, vulnerability, and adaptation strategies of farming communities of the cool-wet temperate (Lumle) and the hot-wet sub-tropical (Meghauli) villages in Central Nepal was conducted. The findings are derived from the analysis of temperature and precipitation data of last 40 years, and primary data collected in September 2012. Focus Group Discussions, Key Informant Interviews, and Historical Timeline Calender were applied. The changes perceived by the communities are fairly consistent with the meteorological observations and are challenging the sustainability of social-ecological systems and communities’ livelihoods. Farming communities have adopted some strategies to minimize the vulnerability. But the adopted strategies have produced both negative and positive results. Strategies like flood control, shifting crop calendars, occupational changes and labour migrations have produced positive results in livelihood security. Occupational changes and labour migration have negatively impacted local agro-ecology and agricultural economies. Early-harvesting strategies to reduce losses from hailstorm have reduced the food and fodder security. Lack of irrigation for rice-seedlings is severely affecting the efficacy of shifting the rice-transplantation calendar. Conclusions suggest that while farmers have practiced strategies to better management of farms, livelihood sustainabilities are reaching thresholds due to the changing conditions.Rishikesh Pandey, Douglas K Bardsle

    Climate-induced severe water scarcity events as harbinger of global grain price

    Get PDF
    The severe water scarcity (SWS) concept allows for consistent analysis of the supply and demand for water sourced grain production worldwide. Thus, the primary advantage of using SWS is its ability to simultaneously accommodate the spatial extent and temporal persistence of droughts using climatic data. The SWS concept was extended here to drivers of global grain prices using past SWS events and prices of three dominant grain crops: wheat, rice and maize. A significant relation between the SWS affected area and the prices of wheat was confirmed. The past price–SWS association was then used to project future wheat prices considering likely climate change scenarios until 2050 and expected SWS extent. The projected wheat prices increase with increasing SWS area that is in turn a function of greenhouse gas emissions. The need to act to reduce greenhouse gas emissions is again reinforced assuming the SWS-price relation for wheat is unaltered

    Modelling different cropping systems

    Get PDF
    Grapevine is a worldwide valuable crop characterized by a high economic importance for the production of high quality wines. However, the impact of climate change on the narrow climate niches in which grapevine is currently cultivated constitute a great risk for future suitability of grapevine. In this context, grape simulation models are considered promising tools for their contribution to investigate plant behavior in different environments. In this study, six models developed for simulating grapevine growth and development were tested by focusing on their performances in simulating main grapevine processes under two calibration levels: minimum and full calibration. This would help to evaluate major limitations/strength points of these models, especially in the view of their application to climate change impact and adaptation assessments. Preliminary results from two models (GrapeModel and STICS) showed contrasting abilities in reproducing the observed data depending on the site, the year and the target variable considered. These results suggest that a limited dataset for model calibration would lead to poor simulation outputs. However, a more complete interpretation and detailed analysis of the results will be provided when considering the other models simulations

    Why do crop models diverge substantially in climate impact projections? A comprehensive analysis based on eight barley crop models

    Get PDF
    Robust projections of climate impact on crop growth and productivity by crop models are key to designing effective adaptations to cope with future climate risk. However, current crop models diverge strongly in their climate impact projections. Previous studies tried to compare or improve crop models regarding the impact of one single climate variable. However, this approach is insufficient, considering that crop growth and yield are affected by the interactive impacts of multiple climate change factors and multiple interrelated biophysical processes. Here, a new comprehensive analysis was conducted to look holistically at the reasons why crop models diverge substantially in climate impact projections and to investigate which biophysical processes and knowledge gaps are key factors affecting this uncertainty and should be given the highest priorities for improvement. First, eight barley models and eight climate projections for the 2050s were applied to investigate the uncertainty from crop model structure in climate impact projections for barley growth and yield at two sites: Jokioinen, Finland (Boreal) and Lleida, Spain (Mediterranean). Sensitivity analyses were then conducted on the responses of major crop processes to major climatic variables including temperature, precipitation, irradiation, and CO2, as well as their interactions, for each of the eight crop models. The results showed that the temperature and CO2 relationships in the models were the major sources of the large discrepancies among the models in climate impact projections. In particular, the impacts of increases in temperature and CO2 on leaf area development were identified as the major causes for the large uncertainty in simulating changes in evapotranspiration, above-ground biomass, and grain yield. Our findings highlight that advancements in understanding the basic processes and thresholds by which climate warming and CO2 increases will affect leaf area development, crop evapotranspiration, photosynthesis, and grain formation in contrasting environments are needed for modeling their impacts.Peer reviewe

    AgMIP-Wheat multi-model simulations on climate change impact and adaptation for global wheat, SDATA-20-01059

    Get PDF
    The climate change impact and adaptation simulations from the Agricultural Model Intercomparison and Improvement Project (AgMIP) for wheat provide a unique dataset of multi-model ensemble simulations for 60 representative global locations covering all global wheat mega environments. The multi-model ensemble reported here has been thoroughly benchmarked against a large number of experimental data, including different locations, growing season temperatures, atmospheric CO2 concentration, heat stress scenarios, and their interactions. In this paper, we describe the main characteristics of this global simulation dataset. Detailed cultivar, crop management, and soil datasets were compiled for all locations to drive 32 wheat growth models. The dataset consists of 30-year simulated data including 25 output variables for nine climate scenarios, including Baseline (1980-2010) with 360 or 550 ppm CO2, Baseline +2oC or +4oC with 360 or 550 ppm CO2, a mid-century climate change scenario (RCP8.5, 571 ppm CO2), and 1.5°C (423 ppm CO2) and 2.0oC (487 ppm CO2) warming above the pre-industrial period (HAPPI). This global simulation dataset can be used as a benchmark from a well-tested multi-model ensemble in future analyses of global wheat. Also, resource use efficiency (e.g., for radiation, water, and nitrogen use) and uncertainty analyses under different climate scenarios can be explored at different scales. The DOI for the dataset is 10.5281/zenodo.4027033 (AgMIP-Wheat, 2020), and all the data are available on the data repository of Zenodo (doi: 10.5281/zenodo.4027033).Two scientific publications have been published based on some of these data here
    • 

    corecore