1,280 research outputs found
Topological Defects on Fluctuating Surfaces: General Properties and the Kosterlitz-Thouless Transition
We investigate the Kosterlitz-Thouless transition for hexatic order on a free
fluctuating membrane and derive both a Coulomb gas and a sine-Gordon
Hamiltonian to describe it. The Coulomb-gas Hamiltonian includes charge
densities arising from disclinations and from Gaussian curvature. There is an
interaction coupling the difference between these two densities, whose strength
is determined by the hexatic rigidity, and an interaction coupling Gaussian
curvature densities arising from the Liouville Hamiltonian resulting from the
imposition of a covariant cutoff. In the sine-Gordon Hamiltonian, there is a
linear coupling between a scalar field and the Gaussian curvature. We discuss
gauge-invariant correlation function for hexatic order and the dielectric
constant of the Coulomb gas. We also derive renormalization group recursion
relations that predict a transition with decreasing bending rigidity .Comment: REVTEX, 45 pages with 11 postscript figures compressed using uufiles.
Accepted for publication in Phys. Rev.
Automatic Abstraction for Congruences
One approach to verifying bit-twiddling algorithms is to derive invariants between the bits that constitute the variables of a program. Such invariants can often be described with systems of congruences where in each equation , (unknown variable m)\vec{c}\vec{x}$ is a vector of propositional variables (bits). Because of the low-level nature of these invariants and the large number of bits that are involved, it is important that the transfer functions can be derived automatically. We address this problem, showing how an analysis for bit-level congruence relationships can be decoupled into two parts: (1) a SAT-based abstraction (compilation) step which can be automated, and (2) an interpretation step that requires no SAT-solving. We exploit triangular matrix forms to derive transfer functions efficiently, even in the presence of large numbers of bits. Finally we propose program transformations that improve the analysis results
Universality in the Screening Cloud of Dislocations Surrounding a Disclination
A detailed analytical and numerical analysis for the dislocation cloud
surrounding a disclination is presented. The analytical results show that the
combined system behaves as a single disclination with an effective fractional
charge which can be computed from the properties of the grain boundaries
forming the dislocation cloud. Expressions are also given when the crystal is
subjected to an external two-dimensional pressure. The analytical results are
generalized to a scaling form for the energy which up to core energies is given
by the Young modulus of the crystal times a universal function. The accuracy of
the universality hypothesis is numerically checked to high accuracy. The
numerical approach, based on a generalization from previous work by S. Seung
and D.R. Nelson ({\em Phys. Rev A 38:1005 (1988)}), is interesting on its own
and allows to compute the energy for an {\em arbitrary} distribution of
defects, on an {\em arbitrary geometry} with an arbitrary elastic {\em energy}
with very minor additional computational effort. Some implications for recent
experimental, computational and theoretical work are also discussed.Comment: 35 pages, 21 eps file
Superconducting Coherence and the Helicity Modulus in Vortex Line Models
We show how commonly used models for vortex lines in three dimensional
superconductors can be modified to include k=0 excitations. We construct a
formula for the k=0 helicity modulus in terms of fluctuations in the projected
area of vortex loops. This gives a convenient criterion for the presence of
superconducting coherence. We also present Monte Carlo simulations of a
continuum vortex line model for the melting of the Abrikosov vortex lattice in
pure YBCO.Comment: 4 pages RevTeX, 2 eps figures included using eps
2+1 gravity and Doubly Special Relativity
It is shown that gravity in 2+1 dimensions coupled to point particles
provides a nontrivial example of Doubly Special Relativity (DSR). This result
is obtained by interpretation of previous results in the field and by
exhibiting an explicit transformation between the phase space algebra for one
particle in 2+1 gravity found by Matschull and Welling and the corresponding
DSR algebra. The identification of 2+1 gravity as a system answers a
number of questions concerning the latter, and resolves the ambiguity of the
basis of the algebra of observables.
Based on this observation a heuristic argument is made that the algebra of
symmetries of ultra high energy particle kinematics in 3+1 dimensions is
described by some DSR theory.Comment: 8 pages Latex, no figures, typos correcte
Large lepton asymmetry from Q-balls
We propose a scenario which can explain large lepton asymmetry and small
baryon asymmetry simultaneously. Large lepton asymmetry is generated through
Affleck-Dine (AD) mechanism and almost all the produced lepton numbers are
absorbed into Q-balls (L-balls). If the lifetime of the L-balls is longer than
the onset of electroweak phase transition but shorter than the epoch of big
bang nucleosynthesis (BBN), the large lepton asymmetry in the L-balls is
protected from sphaleron effects. On the other hand, small (negative) lepton
numbers are evaporated from the L-balls due to thermal effects, which are
converted into the observed small baryon asymmetry by virtue of sphaleron
effects. Large and positive lepton asymmetry of electron type is often
requested from BBN. In our scenario, choosing an appropriate flat direction in
the minimal supersymmetric standard model (MSSM), we can produce positive
lepton asymmetry of electron type but totally negative lepton asymmetry.Comment: 10 pages, 3 figures, ReVTeX
Demonstration of the temporal matter-wave Talbot effect for trapped matter waves
We demonstrate the temporal Talbot effect for trapped matter waves using
ultracold atoms in an optical lattice. We investigate the phase evolution of an
array of essentially non-interacting matter waves and observe matter-wave
collapse and revival in the form of a Talbot interference pattern. By using
long expansion times, we image momentum space with sub-recoil resolution,
allowing us to observe fractional Talbot fringes up to 10th order.Comment: 17 pages, 7 figure
Single Spin Asymmetry in Polarized Proton-Proton Elastic Scattering at GeV
We report a high precision measurement of the transverse single spin
asymmetry at the center of mass energy GeV in elastic
proton-proton scattering by the STAR experiment at RHIC. The was measured
in the four-momentum transfer squared range \GeVcSq, the region of a significant interference between the
electromagnetic and hadronic scattering amplitudes. The measured values of
and its -dependence are consistent with a vanishing hadronic spin-flip
amplitude, thus providing strong constraints on the ratio of the single
spin-flip to the non-flip amplitudes. Since the hadronic amplitude is dominated
by the Pomeron amplitude at this , we conclude that this measurement
addresses the question about the presence of a hadronic spin flip due to the
Pomeron exchange in polarized proton-proton elastic scattering.Comment: 12 pages, 6 figure
Longitudinal double-spin asymmetry and cross section for inclusive neutral pion production at midrapidity in polarized proton collisions at sqrt(s) = 200 GeV
We report a measurement of the longitudinal double-spin asymmetry A_LL and
the differential cross section for inclusive Pi0 production at midrapidity in
polarized proton collisions at sqrt(s) = 200 GeV. The cross section was
measured over a transverse momentum range of 1 < p_T < 17 GeV/c and found to be
in good agreement with a next-to-leading order perturbative QCD calculation.
The longitudinal double-spin asymmetry was measured in the range of 3.7 < p_T <
11 GeV/c and excludes a maximal positive gluon polarization in the proton. The
mean transverse momentum fraction of Pi0's in their parent jets was found to be
around 0.7 for electromagnetically triggered events.Comment: 6 pages, 3 figures, submitted to Phys. Rev. D (RC
- …