214 research outputs found

    Exploring the SDSS Dataset with Linked Scatter Plots: I. EMP, CEMP, and CV Stars

    Get PDF
    We present the results of a search for extremely metal-poor (EMP), carbon-enhanced metal-poor (CEMP), and cataclysmic variable (CV) stars using a new exploration tool based on linked scatter plots (LSPs). Our approach is especially designed to work with very large spectrum data sets such as the SDSS, LAMOST, RAVE, and Gaia data sets, and it can be applied to stellar, galaxy, and quasar spectra. As a demonstration, we conduct our search using the SDSS DR10 data set. We first created a 3326-dimensional phase space containing nearly 2 billion measures of the strengths of over 1600 spectral features in 569,738 SDSS stars. These measures capture essentially all the stellar atomic and molecular species visible at the resolution of SDSS spectra. We show how LSPs can be used to quickly isolate and examine interesting portions of this phase space. To illustrate, we use LSPs coupled with cuts in selected portions of phase space to extract EMP stars, CEMP stars, and CV stars. We present identifications for 59 previously unrecognized candidate EMP stars and 11 previously unrecognized candidate CEMP stars. We also call attention to 2 candidate He~II emission CV stars found by the LSP approach that have not yet been discussed in the literature.Comment: Accepted by the Astrophysical Journal Supplement (February 2017

    Improving NASA's Multiscale Modeling Framework for Tropical Cyclone Climate Study

    Get PDF
    One of the current challenges in tropical cyclone (TC) research is how to improve our understanding of TC interannual variability and the impact of climate change on TCs. Recent advances in global modeling, visualization, and supercomputing technologies at NASA show potential for such studies. In this article, the authors discuss recent scalability improvement to the multiscale modeling framework (MMF) that makes it feasible to perform long-term TC-resolving simulations. The MMF consists of the finite-volume general circulation model (fvGCM), supplemented by a copy of the Goddard cumulus ensemble model (GCE) at each of the fvGCM grid points, giving 13,104 GCE copies. The original fvGCM implementation has a 1D data decomposition; the revised MMF implementation retains the 1D decomposition for most of the code, but uses a 2D decomposition for the massive copies of GCEs. Because the vast majority of computation time in the MMF is spent computing the GCEs, this approach can achieve excellent speedup without incurring the cost of modifying the entire code. Intelligent process mapping allows differing numbers of processes to be assigned to each domain for load balancing. The revised parallel implementation shows highly promising scalability, obtaining a nearly 80-fold speedup by increasing the number of cores from 30 to 3,335

    Interactive Visualization of High-Dimensional Petascale Ocean Data

    Get PDF
    We describe an application for interactive visualization of 5 petabytes of time-varying multivariate data from a high-resolution global ocean circulation model. The input data are 10311 hourly (ocean time) time steps of various 2D and 3D fields from a 22-billion point 1/48- degree lat-lon cap configuration of the MIT General Circulation Model (MITgcm). We map the global horizontal model domain onto our 128-screen (8x16) tiled display wall to produce a canonical tiling with approximately one MITgcm grid point per display pixel, and using this tiling we encode the entire time series for multiple native and computed scalar quantities at a collection of ocean depths. We reduce disk bandwidth requirements by converting the models floating point data to 16-bit fixed point values, and compressing those values with a lossless video encoder, which together allow synchronized playback at 24 time steps per second across all 128 displays. The application allows dynamic assignment of any two encoded tiles to any display, and has multiple interfaces for quickly specifying various orderly arrangements of tiles. All subsequent rendering is done on the fly, with run time control of colormaps, transfer functions, histogram equalization, and labeling. The two data streams on each screen can be rendered independently and combined in various ways, including blending, differencing, horizontal/ vertical wipes, and checkerboarding. The two data streams on any screen can optionally be displayed as a scatterplot in their joint attribute space. All scatterplots and map-view plots from the same x/y location and depth are linked so they all show the current brushable selection. Ocean scientists have used the system, and have found previously unidentified features in the data

    LightForce Photon-Pressure Collision Avoidance: Updated Efficiency Analysis Utilizing a Highly Parallel Simulation Approach

    Get PDF
    This paper provides an updated efficiency analysis of the LightForce space debris collision avoidance scheme. LightForce aims to prevent collisions on warning by utilizing photon pressure from ground based, commercial off the shelf lasers. Past research has shown that a few ground-based systems consisting of 10 kilowatt class lasers directed by 1.5 meter telescopes with adaptive optics could lower the expected number of collisions in Low Earth Orbit (LEO) by an order of magnitude. Our simulation approach utilizes the entire Two Line Element (TLE) catalogue in LEO for a given day as initial input. Least-squares fitting of a TLE time series is used for an improved orbit estimate. We then calculate the probability of collision for all LEO objects in the catalogue for a time step of the simulation. The conjunctions that exceed a threshold probability of collision are then engaged by a simulated network of laser ground stations. After those engagements, the perturbed orbits are used to re-assess the probability of collision and evaluate the efficiency of the system. This paper describes new simulations with three updated aspects: 1) By utilizing a highly parallel simulation approach employing hundreds of processors, we have extended our analysis to a much broader dataset. The simulation time is extended to one year. 2) We analyze not only the efficiency of LightForce on conjunctions that naturally occur, but also take into account conjunctions caused by orbit perturbations due to LightForce engagements. 3) We use a new simulation approach that is regularly updating the LightForce engagement strategy, as it would be during actual operations. In this paper we present our simulation approach to parallelize the efficiency analysis, its computational performance and the resulting expected efficiency of the LightForce collision avoidance system. Results indicate that utilizing a network of four LightForce stations with 20 kilowatt lasers, 85% of all conjunctions with a probability of collision Pc > 10 (sup -6) can be mitigated

    Genome-wide survey of cytochrome P450 genes in the salmon louse Lepeophtheirus salmonis (Krøyer, 1837)

    Get PDF
    Background The salmon louse (Lepeophtheirus salmonis) infests farmed and wild salmonid fishes, causing considerable economic damage to the salmon farming industry. Infestations of farmed salmon are controlled using a combination of non-medicinal approaches and veterinary drug treatments. While L. salmonis has developed resistance to most available salmon delousing agents, relatively little is known about the molecular mechanisms involved. Members of the cytochrome P450 (CYP) superfamily are typically monooxygenases, some of which are involved in the biosynthesis and metabolism of endogenous compounds, while others have central roles in the detoxification of xenobiotics. In terrestrial arthropods, insecticide resistance can be based on the enhanced expression of CYPs. The reported research aimed to characterise the CYP superfamily in L. salmonis and assess its potential roles in drug resistance. Methods Lepeophtheirus salmonis CYPs were identified by homology searches of the genome and transcriptome of the parasite. CYP transcript abundance in drug susceptible and multi-resistant L. salmonis was assessed by quantitative reverse transcription PCR, taking into account both constitutive expression and expression in parasites exposed to sublethal levels of salmon delousing agents, ecdysteroids and environmental chemicals. Results The above strategy led to the identification of 25 CYP genes/pseudogenes in L. salmonis, making its CYP superfamily the most compact characterised for any arthropod to date. Lepeophtheirus salmonis possesses homologues of a number of arthropod CYP genes with roles in ecdysteroid metabolism, such as the fruit fly genes disembodied, shadow, shade, spook and Cyp18a1. CYP transcript expression did not differ between one drug susceptible and one multi-resistant strain of L. salmonis. Exposure of L. salmonis to emamectin benzoate or deltamethrin caused the transcriptional upregulation of certain CYPs. In contrast, neither ecdysteroid nor benzo[a]pyrene exposure affected CYP transcription significantly. Conclusions The parasite L. salmonis is demonstrated to possess the most compact CYP superfamily characterised for any arthropod to date. The complement of CYP genes in L. salmonis includes conserved CYP genes involved in ecdysteroid biosynthesis and metabolism, as well as drug-inducible CYP genes. The present study does not provide evidence for a role of CYP genes in the decreased susceptibility of the multiresistant parasite strain studied

    Implementation of an Open-Scenario, Long-Term Space Debris Simulation Approach

    Get PDF
    This paper provides a status update on the implementation of a flexible, long-term space debris simulation approach. The motivation is to build a tool that can assess the long-term impact of various options for debris-remediation, including the LightForce space debris collision avoidance concept that diverts objects using photon pressure [9]. State-of-the-art simulation approaches that assess the long-term development of the debris environment use either completely statistical approaches, or they rely on large time steps on the order of several days if they simulate the positions of single objects over time. They cannot be easily adapted to investigate the impact of specific collision avoidance schemes or de-orbit schemes, because the efficiency of a collision avoidance maneuver can depend on various input parameters, including ground station positions and orbital and physical parameters of the objects involved in close encounters (conjunctions). Furthermore, maneuvers take place on timescales much smaller than days. For example, LightForce only changes the orbit of a certain object (aiming to reduce the probability of collision), but it does not remove entire objects or groups of objects. In the same sense, it is also not straightforward to compare specific de-orbit methods in regard to potential collision risks during a de-orbit maneuver. To gain flexibility in assessing interactions with objects, we implement a simulation that includes every tracked space object in Low Earth Orbit (LEO) and propagates all objects with high precision and variable time-steps as small as one second. It allows the assessment of the (potential) impact of physical or orbital changes to any object. The final goal is to employ a Monte Carlo approach to assess the debris evolution during the simulation time-frame of 100 years and to compare a baseline scenario to debris remediation scenarios or other scenarios of interest. To populate the initial simulation, we use the entire space-track object catalog in LEO. We then use a high precision propagator to propagate all objects over the entire simulation duration. If collisions are detected, the appropriate number of debris objects are created and inserted into the simulation framework. Depending on the scenario, further objects, e.g. due to new launches, can be added. At the end of the simulation, the total number of objects above a cut-off size and the number of detected collisions provide benchmark parameters for the comparison between scenarios. The simulation approach is computationally intensive as it involves tens of thousands of objects; hence we use a highly parallel approach employing up to a thousand cores on the NASA Pleiades supercomputer for a single run. This paper describes our simulation approach, the status of its implementation, the approach to developing scenarios and examples of first test runs

    LightForce Photon-pressure Collision Avoidance: Efficiency Analysis in the Current Debris Environment and Long-Term Simulation Perspective

    Get PDF
    This work provides an efficiency analysis of the LightForce space debris collision avoidance scheme in the current debris environment and describes a simulation approach to assess its impact on the long-term evolution of the space debris environment. LightForce aims to provide just-in-time collision avoidance by utilizing photon pressure from ground-based industrial lasers. These ground stations impart minimal accelerations to increase the miss distance for a predicted conjunction between two objects. In the first part of this paper we will present research that investigates the short-term effect of a few systems consisting of 10kW class lasers directed by 1.5 m diameter telescopes using adaptive optics. The results found such a network of ground stations to mitigate more than 85 percent of conjunctions and could lower the expected number of collisions in Low Earth Orbit (LEO) by an order of magnitude. While these are impressive numbers that indicate LightForce's utility in the short-term, the remaining 15 percent of possible collisions contain (among others) conjunctions between two massive objects that would add large amount of debris if they collide. Still, conjunctions between massive objects and smaller objects can be mitigated. Hence we choose to expand the capabilities of the simulation software to investigate the overall effect of a network of LightForce stations on the long-term debris evolution. In the second part of this paper, we will present the planed simulation approach for that effort

    TFOS DEWS II Report Executive Summary

    Get PDF
    This article presents an Executive Summary of the conclusions and recommendations of the 10-chapter TFOS DEWS II report. The entire TFOS DEWS II report was published in the July 2017 issue of The Ocular Surface. A downloadable version of the document and additional material, including videos of diagnostic and management techniques, are available on the TFOS website: www.TearFilm.org
    • …
    corecore