
56 THIS ARTICLE HAS BEEN PEER-REVIEWED. COMPUTING IN SCIENCE & ENGINEERING

M U L T I S C A L E
M O D E L I N G

1521-9615/13/$31.00 © 2013 IEEE

COPUBLISHED BY THE IEEE CS AND THE AIP

Bo-Wen Shen

University of Maryland, College Park, and NASA Goddard Space Flight Center

Bron Nelson and Samson Cheung

NASA Ames Research Center

Wei-Kuo Tao

NASA Goddard Space Flight Center

Improving NASA’s Multiscale
Modeling Framework for Tropical
Cyclone Climate Study

One of the current challenges in tropical cyclone research is how to improve our
understanding of TCs’ interannual variability as well as climate change’s impact. Modern
advances in global modeling, visualization, and supercomputing technologies at NASA
show potential, but scalability is an issue. Recent improvements to the multiscale modeling
framework make long-term TC-resolving simulations much more feasible.

S
tudies of tropical cyclone interannual
variability and the impact of climate
change on TCs have received increas-
ing attention, particularly as during the

past 10 years statistics indicate that TCs are the
deadliest weather events in the US (www.nws.
noaa.gov/os/hazstats.shtml). Improving short-
and long-term hurricane forecasts is imperative.
Depending on their location, TCs can be called
other names, such as hurricanes (in the Atlantic
region), typhoons (in the West Pacific region),
tropical storms, cyclonic storms, and tropical
depressions.

TC dynamics involve multiscale processes. To
accurately simulate a TC’s evolution on a medium,
or meso, scale, an ideal solution would be to im-
prove the model to realistically capture both the
downscaling processes associated with large-scale

flows, such as Madden-Julian oscillations or tropi-
cal waves, and the upscaling processes associated
with the feedback from small-scale flows, such
as convection or precipitation. However, it has
been challenging to accurately simulate TC ac-
tivities with traditional numerical models because
of artificial scale separations. For example, Earth
atmospheric-modeling activities are convention-
ally divided into three major categories: global,
or large, scale; mesoscale, and cloud, or micro,
scale. As Figure 1 shows, typical resolutions for
the global, mesoscale (or regional), and cloud
models are on the order of 100 km, 10 km, and
1 km, respectively.

Due to limited access to computing resourc-
es, researchers have had to conduct TC climate
studies primarily with coarse-resolution gen-
eral circulation models (GCMs)1 and partially
with fine-resolution, regional mesoscale models
(MMs). The former have the advantage of simu-
lating the impact of global-scale flows on TC
activities but might not accurately simulate meso-
and cloud-scale flows. In contrast, the latter make
it possible to simulate realistic TC intensity and
structure with fine grid spacing, but this ap-
proach has problems capturing the accurate im-
pact of large spatial- and temporal-scale flows.
Furthermore, the resolutions used in GCMs and
MMs are still too coarse to resolve small-scale

https://ntrs.nasa.gov/search.jsp?R=20140011563 2019-08-31T19:03:49+00:00Z

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42726063?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

SEPTEMBER/OCTOBER 2013 57

 convective motion in TC climate studies, forcing
researchers to use cumulus parameterizations (CPs)
to emulate the effects of unresolved subgrid-
scale cloud motion. Because the development of
CPs has been slow, their performance is a major
limiting factor in TC simulations. To overcome
the issues with CPs, a recent trend is to take full
advantage of modern supercomputing power to

explicitly resolve the impact of clouds in a global
environment. Two approaches are to deploy high-
resolution global models2–7 or to couple a coarse-
resolution global model with massive copies of
cloud models. The latter approach is known as
superparameterization, or the multiscale model-
ing framework (MMF), and it’s the one we focus
on here.8–10 Recently, we successfully integrated

Figure 1. The three major categories of Earth atmospheric modeling (from left to right): global (large)
scale, meso (medium) scale, and cloud (micro) scale. Typical resolutions for these models are roughly
100 km, 10 km, and 1 km, respectively.

PREDICTABILITY OF TROPICAL
CYCLONE GENESIS

By examining the role of different tropical waves in trop-
ical cyclogenesis with observations, William Frank and

Paul Roundy1 found a strong relationship between tropical
cyclone (TC) formation and enhanced activity in equato-
rial Rossby waves, mixed Rossby gravity waves,2 tropical
depression (TD)-type disturbances (or easterly waves), and
Madden-Julian oscillations (MJOs).3 With a 45- to 60-day
time scale, eastward-propagating MJOs, which are typically
characterized by deep convection originating over the
Indian Ocean, have one of the most prominent large-scale
features of the tropical general circulation. These large-
scale tropical systems could provide determinism with re-
gards to TC genesis timing and location. Thus, it becomes
possible to extend the lead time for TC genesis prediction
and thus increase our confidence in the model’s ability to
simulate TC climates as long as the model can improve
the simulations of the precursor and its modulation on TC
activities. More information on modeling the association
between TC genesis and these large-scale tropical systems
appears elsewhere.4–7

References
1. W.M. Frank and P.E. Roundy, “The Role of Tropical Waves in

Tropical Cyclogenesis,” Monthly Weather Review, vol. 134, no. 9,

2006, pp. 2397–2417.

2. T. Matsuno, “Quasi-Geostrophic Motions in the Equatorial Area,”

J. Meteorological Soc. Japan, vol. 44, no. 1, 1966, pp. 25–43.

3. R.A. Madden and P.R. Julian, “Detection of a 40–50 Day Oscillation

in the Zonal Wind in the Tropical Pacific,” J. Atmospheric Sciences,

vol 28, no. 5, 1971, pp. 702–708.

4. B.-W. Shen, W.-K. Tao, and B. Green, “Coupling Advanced

Modeling and Visualization to Improve High-Impact Tropical

Weather Prediction (CAMVis),” Computing in Science & Eng., vol. 13,

no. 5, 2011, pp. 56–67.

5. B.-W. Shen et al., “Genesis of Twin Tropical Cyclones as Revealed

by a Global Mesoscale Model: The Role of Mixed Rossby

Gravity Waves,” J. Geophysical Research, vol. 117, no. D13, 2012;

doi:10.1029/2012JD017450.

6. B.-W. Shen et al., “Advanced Visualizations of Scale Interactions

of Tropical Cyclone Formation and Tropical Waves,” Computing in

Science & Eng., vol. 15, no. 2, 2013, pp. 47–52.

7. B.-W. Shen et al., “Genesis of Hurricane Sandy (2012) Simulated

with a Global Mesoscale Model,” Geophysical Research Letters,

vol. 40, 2013, pp. 1–7; doi:10.1002/grl.50934.

Global
(GCMs)

Model
scale

Physical
processes MJO; tropical waves

Vortex merger/
axisymmetrization

Precipitation/
convection

Super parameterization
(multiscale modeling framework, MMF)

Global mesoscale

Down-
scaling

Up-
scaling

Intensification
or

weakening
ModulationScale

interaction
Feedback

Mesoscale/
regional

Cloud

58 COMPUTING IN SCIENCE & ENGINEERING

both models with visualizations into the coupled
advanced multiscale modeling and visualization
system (CAMVis) on NASA’s Pleiades supercom-
puter,4–7 which shows promise for short-term and
extended-range TC simulations.

In the MMF, you replace the conventional CP
at each GCM grid point with a copy of a cloud-
resolving model (CRM) to accurately represent
non-hydrostatic, cloud-scale convection and its
interaction with environmental flows. Thus, the
MMF has the advantages of both the global-scale
processes of a GCM and the sophisticated micro-
physical processes of a CRM, and can be viewed
as an alternative to a global CRM. However, this
approach poses great challenges in terms of com-
puting resources, data storage, and data analyses
for multidecadal simulations of global TC activi-
ties. These challenges include, but are not lim-
ited to, running more than 10,000 instantiations
of the CRM with great parallel performance,
increasing the GCM’s resolution to capture re-
alistic TC structure, efficiently archiving mas-
sive volumes of data, and effectively conducting
analyses to discover the predictive relationship
between meteorological (short-term) and clima-
tological (long-term) events. To address the first
two issues, we propose a revised MMF coupling
approach to improve the model’s scalability, en-
abling higher resolutions in both the GCM and
CRM, reducing the time to finish TC climate
simulations.

Throughout this article, we adopted the
following conventions: the name of each routine
ends with parentheses (); the name of each variable
is in italics; the term process is a running instance
of model codes; and the terms task and process are
used as follows: the former emphasizes the work
being done, and the latter emphasizes the worker
doing it (for example, task A is performed using
process A).

NASA’s MMF
The NASA Goddard MMF9,10 is based on the
NASA Goddard finite-volume GCM (fvGCM) and
the Goddard cumulus ensemble (GCE) model.
While the high-resolution fvGCM has shown
remarkable capabilities in simulating large-scale
flows, and thus hurricane tracks,2–7,11 the GCE
is well known for its superior performance in
representing small, cloud-scale motions and has
been used to produce more than 100 referred
journal papers.12,13 In the MMF, the fvGCM
runs at a coarse (2° � 2.5°) resolution, and
one copy of the GCE runs within each of the
fvGCM grids.10

Researchers still widely use the 2° � 2.5° reso-
lution in climate simulations with conventional
climate models and recent MMFs because it’s com-
putationally affordable. This resolution has grid
points of (91, 144) in the (y, x) directions, giving
a total of 91 � 144 (13,104) horizontal cells. Thus,
13,104 GCEs are “embedded” in the fvGCM to
allow explicit simulation of cloud processes in
a global environment. Currently, only averaged
thermodynamic fields such as temperature and wa-
ter vapor in the GCEs are fed back to the fvGCM,
in a process called thermodynamic feedback. The
timestep for the individual 2D GCE is 10 seconds,
and the fvGCM-GCE coupling interval is one
hour at this resolution. Under this configuration,
99 percent or more of the total wall time for run-
ning the MMF is spent on the GCEs. Thus, wall
time could be significantly reduced by efficiently
distributing the large number of GCEs over a
massive number of processors on a supercomputer.

Let’s look more closely at the computational
parts of the GCE and fvGCM, before discussing
a revised strategy for coupling the latter with
massive copies of the GCE to improve scalability.

The GCE Model
Typical MMF model runtime configurations
are 64 grid points in the x direction, with a grid
spacing of 4 km; 32 vertical stretched levels; cy-
clic lateral boundary conditions; and a time step
of 10 seconds. The GCE itself has been imple-
mented with a 2D domain decomposition using
message-passing interface version 1 (MPI-1) with
good parallel efficiency.14 Thus, an ideal solution
for the course-grain parallelism implemented in
the MMF is to run more copies of GCEs with
higher CPU counts in parallel, while still keeping
the option of taking advantage of the fine-grain
parallelism inside the GCE.

The fvGCM
Resulting from a development effort of more
than 15 years, the fvGCM is a unified numerical
weather prediction (NWP) and climate model
that can run on daily, monthly, decadal, or century
time scales.11,15 The 1990s model was originally
designed for climate studies at a coarse resolution
of approximately 2 � 2.5 degrees, and its resolution
was increased to 1 degree in 2000 and ½ degree in
2002 for NWP. Since 2005, the high-resolution—
that is, 1/8 and 1/12 degree—fvGCM has been
deployed on NASA’s Columbia supercomputer,
showing remarkable TC forecasts.2

The fvGCM’s parallelization was carefully de-
signed to achieve efficiency, parallel scalability,

SEPTEMBER/OCTOBER 2013 59

flexibility, and portability. Its implementation had
distributed- and shared-memory, two-level paral-
lelism, including a coarse-grain parallelism with
MPI and fine-grain parallelism with OpenMP
(throughout this article, we refer to MPI as any
one of MPI-1, MPI-2, MLP, or SHMEM com-
munication paradigms).16 However, the latter isn’t
applicable for current MMF runs. Because MPI
parallelism is applied to a 1D decomposition over
latitude in the fvGCM, and each MPI task needs
at least three grid points in latitude for parallel ef-
ficiency, MPI parallelism is very limited for small
computational grids (see Figure 2). Assume NY is
the number of grid points in the y direction. In
general, NY is equal to (180°/DY � 1), where DY is
an increment in latitude that can be 0.08°, 0.125°,
0.25°, 0.5°, 1°, or 2°. For the 2 � 2.5 degree grids
where NY � 91 (with DY � 2), the maximum of
MPI tasks is only 30 (�91/3). In addition, because
NY generally isn’t divisible by the number of se-
lected processes (P), the domain decomposition
is nonuniform, which leads to load unbalancing

 because some MPI processes receive more lati-
tudes than others.

Revised Parallelism in the MMF
We discuss the revised parallelism by first intro-
ducing the metaglobal GCE (mgGCE) and then
presenting the details on parallel implementation,
including the creation of two process groups—
process mapping and load balancing—and the
dynamical distribution of mgGCE inputs over
mgGCE processes.

The Metaglobal GCE
In MMF version 1, each of 13,104 GCEs is em-
bedded into an fvGCM grid cell. Although the
implementation of this version is straightforward,
by adopting the fvGCM’s parallel framework, it
inherits both the fvGCM framework’s advantages
and disadvantages. One of the disadvantages is
that this approach limits the MMF’s parallel scal-
ability—that is, it can only decompose the whole
domains into small-number subdomains and each

Figure 2. Parallelism in the finite-volume general circulation model (fvGCM) and the multiscale modeling framework (MMF)
version 1.0. The fvGCM has the message-passing interface (MPI) parallel implementation with a 1D domain decomposition
along the y direction. The approach of embedding one copy of Goddard cumulus ensemble (GCE) into each of the fvGCM’s
grids inherits the parallelism and thus limited scalability of the fvGCM. The right panel shows the distribution of tasks over six
processing elements (PEs). Task J (here, J � 1 � 5) performs 2,160 copies of GCEs, while task 6 has 2,304 copies of GCEs: Z(J) ��
2,160, J � 1~5; Z(6) � 2,304; Z JJ

P ()=∑ 1 � 13,104, with P � 6 in this case.

90N

60N

30N

E0

30S

60S

90S
0 060W120W180120E60E

Task 1

Task 2

Task 3

Task 4

Task 5

Task 6

PE1

PE2

PE3

PE4

PE5

PE6

2160 copies of GCEs

2160 copies of GCEs

2160 copies of GCEs

2160 copies of GCEs

2160 copies of GCEs

2304 copies of GCEs

90N

60N

30N

E0

30S

60S

90S
0 060W120W180120E60E

Task 1

Task 2

Task 3

Task 4

Task 5

Task 6

PE1

PE2

PE3

PE4

PE5

PE6

Z(1)
copies of

GCEs

PE1 PE2

Z(2)
copies of

GCEs

MMF interface

fvGCM with P PEs

with 1-D MPI parallelism

PEP

Z(p)
copies of

GCEs

60 COMPUTING IN SCIENCE & ENGINEERING

requires many copies of GCEs to run within one
processing element (PE). For example, 2,160 cop-
ies of the GCE run in series in one PE when we
use only six PEs (see Figure 2). Let’s assume we
use the maximum number PEs (30), and each
PE performs one copy of the GCE at a time and
needs to run 432 copies of the GCEs sequentially.
Therefore, making more copies of the GCEs to
run in parallel with more PEs is the key to reduc-
ing the wall-clock time.

From a computational perspective, the concept
of embedding GCEs into the fvGCM restricts
the MMF’s view of the parallelism—namely, it
can only inherit it from the fvGCM. Because a
GCE uses a periodic, lateral boundary condition,
each embedded GCE’s execution is independent
of the other GCEs during a time step of the

fvGCM model, and thus the GCE can run in a
separate MPI task. Accordingly, we propose a new
coupling approach to improve the MMF’s paral-
lel scalability. Conceptually, we refer to the 13,104
(144 � 91) copies of GCEs as a supercomponent
called a metaglobal GCE (mgGCE) in a meta
grid-point system. To facilitate discussion, we as-
sume this grid system is the same as the latitude-
longitude grid structure in the fvGCM, although
it isn’t necessarily tied to any specific grid system.

With this concept in mind, each of the
two individual components (the fvGCM and
mgGCE) in the MMF could have its own
domain decompositions. Note that because each
GCE uses cyclic, lateral boundary conditions,
there’s no data communication between any two
GCEs. In other words, the mgGCE has no ghost
region, which is defined as the edge points of the
computing subdomain in one processor that store
the data belonging to adjacent processors. Thus,
a 2D domain decomposition in the mgGCE
can significantly reduce the runtime for massive
copies of the GCE, which can greatly improve
MMF scalability because most of the wall time is
spent on these GCEs.

To couple the fvGCM and mgGCE, the paral-
lelism is implemented to do the following: create
two groups of processes with the MPI intercom-
munication, one group with P fvGCM processes
and the other with Q mgGCE processes; build
a sophisticated static mapping between the P
fvGCM and Q mgGCE processes; and dynami-
cally distribute input values to mgGCE process-
es from the fvGCM processes that can execute
13,104 copies of the GCEs and handle load bal-
ancing. This implementation leads to an effective
2D domain decomposition in the mgGCM, while
the original 1D domain decomposition remains in
the fvGCM. Simply speaking, the first-level par-
allelism decomposes latitudes in the fvGCM, and
the second-level parallelism decomposes longi-
tudes in the mgGCE. Figure 3 offers a schematic
diagram of these domain decompositions; we dis-
cuss the technical details in the next section.

Parallel Implementation
We implemented fvGCM parallelism with MPI
to allow point-to-point, collective communication
among processes in the same group. This kind
of “conventional” communication, which also
appears in many existing MPI single- program
 multiple-data codes, is called intracommunication.
In contrast, intercommunication occurs among
processes in local and remote groups, where a lo-
cal group is one within which a process initiates an

Figure 3. A conceptual diagram of the revised parallelism
implementation using six fvGCM tasks and 19 megaglobal GCE
(mgGCE) tasks. In the original 1D decomposition, each fvGCM process
(top left panel) gets three or more latitudes (or rows) and computes
the mgGCEs for each longitude (or column) sequentially within a row.
The new version adds a second level of parallelism, decomposing a
single row into individual columns (top right panel). Each fvGCM
process has an associated set of mgGCE processes that compute the
GCEs for a row in parallel. More mgGCE processes are assigned to the
fvGCM process with more rows (that is, more copies of the GCEs). The
13,104 GCE copies are distributed over these mgGCE processes (and
the fvGCM processes as needed), achieving an effective 2D domain
decomposition shown in the bottom panel. This revised parallelism
can improve the MMF’s scalability by allowing more copies of GCEs
running in parallel, thus reducing wall time significantly.

Row 1
fvGCM tasks

Row 2
Row 3

Row 15
Task 1,1

Row 76
Row 77
Row 78Task 6

(16 rows)

Task 1
(15 rows)

Row 90
Row 91

90°N

90°S

60°N

60°S

30°N

30°S

0°

fvGCM tasks

Task 1,1
Task 2,1
Task 3,1
Task 4,1
Task 5,1

Task 1,2

mgGCE tasks

Task 2,2
Task 3,2
Task 4,2
Task 5,2

Task 1,3
Task 2,3
Task 3,3
Task 4,3
Task 5,3

Task 6,1 Task 6,2 Task 6,3 Task 6,4

......

......

......

Task 1,2 Task 1,3

Task 6,1 Task 6,2 Task 6,3 Task 6,4

Columns
1,4,7

Columns
1,5,9

Columns
2,6,10

Columns
3,7,11

Columns
4,8,12

Columns
2,5,8

mgGCE tasks

Columns
3,6,9

Task 1
Task 2
Task 3
Task 4
Task 5

Task 6

SEPTEMBER/OCTOBER 2013 61

intercommunication operation—the local group
is the sender (or receiver) in a send (or receive)
call. A remote group is one that contains the tar-
get process, which is the receiver (or sender) in a
send (or receive) call. Note that these two groups
don’t overlap: when the target process needs to be
addressed, the local process uses an (intercom-
municator, rank) pair with the rank relative to the
remote group.

Because of its unique features, we used inter-
communication in the revised parallelism imple-
mentation to couple the fvGCM and the mgGCE.
The main program’s calling tree, fvGCM.F, con-
tains the following steps to finish an MMF run:

1. A master process calls the mmf_gce2d_task_
init() to create two groups of processes
and intercommunicators. One group has P
fvGCM processes and the other has Q mg-
GCE processes. Inside this subroutine, the
mgGCE processes start waiting for inputs to
perform GCE calculations and interact with
the fvGCM processes to receive their inputs
in step 5; all fvGCM processes return back to
the main program to continue the execution.

2. All fvGCM processes call mp_init()
and y_decomp()to perform a 1D domain
decomposition.

3. Each of the fvGCM processes calls the
mmf_gce2d_task_assignment() to asso-
ciate itself with a subset of (T(J)) mgGCE
processes. Here, J is the fvGCM process’s
rank, and T(J) is proportional to the lati-
tudes assigned to the fvGCM process, aimed
at achieving load balancing.

4. All fvGCM processes call mmf_init()to
initialize the MMF run.

5. All P fvGCM processes invoke the mmf_
run(), where the mmf_invoke_gce2d() is
called, to interact with Q mgGCE processes
that run the gce2d_task_main() to finish
144 � 91 gec2d runs.

6. The fvGCM processes sequentially call
mmf_finalize() and mmf_gce2d_task_

finalize()to finalize the fvGCM tasks and
mgGCE tasks, respectively.

Let’s look more closely at steps 1, 3, and 5.

Creation of two process groups and MPI intercom-
municators. Figure 4 displays major functions in
the subroutine mmf_gce2d_task_init() that
create both two groups of processes by calling
MPI subroutine mpi_comm_split() and the
intercommunicators among these two groups
with the mpi_interomm_creat(), which include

gce2d_intercomm with the fvGCM and fvGCM_
inter_comm with the mgGCE processes as local
processes. While mgGCE processes enter a loop
of gce2d_task_main() and start waiting for in-
puts to perform GCE calculations, all fvGCM
processes return back to the main program where
mmf_invoke_gce2d() is called to send data to
the mgGCE processes; Lists 1 and 2 (Figures 5
and 6) display these two subroutines’ major func-
tionalities, which are discussed later.

The mgGCE processes are homogenous and
undifferentiated. In fact, they’re designed to be
stateless, meaning they don’t need to know any-
thing about the fvGCM side of things. They don’t
know what time step it is, who might send them
input, or anything about load balancing or task
assignments. They simply receive a block of input
from the fvGCM processes, use that input to call
the gce2d() routine, and then return a block of
output back to whomever sent them the input. Ev-
erything they need to know is either constant or
provided within the block of input.

Process mapping and load balancing. For a given
total_number_of_processes (P � Q) and total_num-
ber_of_mgGCE_processes (Q) at runtime, the map-
ping between P fvGCM and Q mgGCE processes

Figure 4. Creation of two groups of processes and their intracommunicators
and intercommunicators in the subroutine mmf_gce2d_task_init().
The fvGCM group appears on the left-hand side, whereas the mgGCE
group is on the right. gce2d_intercomm and fvgcm_inter_comm
(in red) are intercommunicators, and gce2d_intra_comm and fvGCM_
intracomm (in blue) are intracommunicators.

fvGCM
processes

task_type=1 task_type=2 GCE
processes

mpi_intercomm_create()

mpi_comm_split()

Total processes

fvGCM_inter_comm

gce2d_intra_comm

fvGCM_intracomm

gce2d_intercomm

Return back to fvGCM()
where

mmf_invoke_gce2d()
is called

gce2d_task_main ()

remote_root=0remote_root=1

62 COMPUTING IN SCIENCE & ENGINEERING

happens in the routine mmf_gce2d_task_as-
signment() illustrated in Figure 7. The fvGCM
processes agree among themselves to carve up the
group of mgGCE processes into disjoint subsets,
with each fvGCM process getting one of these
subsets. Although the assignment is static, it isn’t
necessarily uniform.

For simplicity, we choose these disjoint sub-
sets to be a contiguous block of processes, where
“contiguous” is relative to their rank numbering
within the intercommunicator (with the mgGCE
as a remote group). The array firstExtraGce2d-
Task, associated with the fvGCM processes,
gives the comm rank of the first mgGCE process
of the subset assigned to that fvGCM process;
numGce2dTasksAssigned is the number of mg-
GCE processes assigned to that fvGCM process,
where firstExtraGce2dTask and numGce2d-
TasksAssigned are referred to as S(J) and T(J),
respectively, in Figure 7, with J representing the
fvGCM’s rank. For example, an fvGCM pro-
cess with the rank of 13 has numGce2dTasksAs-
signed(13) or T(13) processes, starting with
intercomm rank firstExtraGce2dTask(13) or
S(13), and going up contiguously. T(J) is rough-
ly equal to (Q/P) but can be larger for some of
fvGCM processes that need more latitudes than
the other processes. The summation of all T(J)
should be equal to Q, namely, T J Q

J
P ()==∑ 1 ,

where S(1) � 1 and S(J � 1) � S(J) � T(J), J � 1 �
P � 1. These intercomm task index values are what
the fvGCM process uses for the “destination”

field of the mpi_send() call, which requires an
(intercommunicator, rank) pair with the “rank”
relative to the remote group.

We can achieve load balancing by giving more
mgGCE processes to the fvGCM processes that
have more latitudes. As shown in the top panel of
Figure 3, if one fvGCM process has to do three
latitudes (or rows), and a different fvGCM process
has to do four, we give the second fvGCM pro-
cess more mgGCE processes (that is, the larger
numGce2dTasksAssigned or T) than we give to
the first. Thus, the second fvGCM process might
be able to do the work within a single latitude
in only three-quarters as much time, so the two
fvGCM processes will both finish their work in
roughly equal amounts of time. While each of
fvGCM processes can also help perform GCE
calculations to improve performance, no fvGCM
process shares its work with other mgGCE pro-
cesses outside of its assigned subset.

Simply speaking, although the load imbalance
was introduced in association with the 1D non-
uniform decomposition in the y direction in the
original MMF, it can be mitigated or resolved by
another 1D nonuniform decomposition in the x
direction in the new MMF.

Dynamical distribution of mgGCE inputs over mgGCE
processes. Lists 1 and 2 (Figures 5 and 6) provide
pseudocodes to show how mgGCE and fvGCM
processes interact to perform the calculations of
13,104 GCE copies. List 1 displays a main loop in

Figure 5. List 1: pseudocode of the gce2d_task_main() routine. Each of the mgGCE processes does a simple loop: receive
inputValues from any fvGCM process, call gce2d() model, and return outputValues to the same fvGCM process that
sent the inputValues.

1. mainLoop: do

2. call mpi_recv(inputValues, , , MPI_ANY_SOURCE, MPI_ANY_TAG, fvGCM_inter_comm,
status, ierror)

3. tag = status(MPI_TAG)

4. source = status(MPI_SOURCE)

5. if (tag .gt. 0) then

6. call mmf_call_gce2d(inputValues,outputValues) !! Compute gce2d()

7. !! Pass the outputs back to the sender, using the supplied tag

8. call mpi_send(outputValues, , MPI_BYTE, source, tag, fvGCM_inter_comm, ierror)

9. else if (tag .eq. 0)then

10.

11. exit mainLoop

!! Exit the do-loop and terminate

12. else

13. !! Unexpected tag value

14. end if

15. enddo mainLoop

SEPTEMBER/OCTOBER 2013 63

gce2d_task_main(), where all mgGCE process-
es wait to receive inputValues from any fvGCM
process (line 2), call the gce2d() model (line
6), and return outputValues (line 8) to the same
fvGCM process that sent the inputValues. In
short, mgGCE process does a simple loop: recv
input - compute gce - send output. As
mentioned, these mgGCE processes are essen-
tially stateless, but in the current implementation,
each mgGCE process is bound (assigned statically)
to a single, particular fvGCM process, which is
just a convenience for the fvGCM side.

All the controlling business happens on the
fvGCM side, as in List 2. Each fvGCM pro-
cess uses the fixed and static process mapping to

 interact with the corresponding subsets of mg-
GCE processes. In addition to handling inputs
and outputs, the fvGCM processes can also help
perform GCE calculations to take advantage of
their computational potential. Therefore, the
inputs and computations for the entire globe are
dynamically distributed to the mgGCE processes
via the following three phases, which correspond
to the three loops in the routine in List 2:

In the send loop (lines 1–7), the fvGCM pro-
cess sends out a lot of inputs to all of its mg-
GCE processes, queuing up depth inputs to
each mgGCE process. Here the variable depth
indicates the number of inputs that are already

1. sendLoop: do d=1, depth
2. do i=1, numGce2dTasks
3. tag = 2 * nextColumn
4. call mpi_isend(inputValues(nextColumn), …, tag, gce2d_intercomm, request

(nextColumn), ierror)

5. nextColumn = nextColumn +1
6. enddo

7. enddo sendLoop

8. sendRecvLoop: do while (nextColumn .le. NumLongitudes)

9. call mpi_iprobe (MPI_ANY_SOURCE, MPI_ANY_TAG, gcen2d_intercomm, pending, status,
ierror)

10. If (pending) then

11. whichTask = status (MPI_SOURCE)
12. whichColumn = status (MPI_TAG) / 2
13. call mpi_recv (outputValues(whichColumn),…., whichTask, …, gce2d_intercomm ….)

14. call mpi_request_free(request(whichColumn), ierror)

15. tag = 2* nextColumn

16. call mpi_isend(inputValues(nextColumn), … tag, gce2d_intercomm,
request(nextColumn), ierror)

17. else

18. call mmf_call_gce2d (tmpInput ……) ! Running with fvGCM processes

19. endif
20. numCompleted = numCompleted + 1
21. nextColumn = nextColumn + 1

22. enddo sendRecvLoop

23. recvLoop: do while(numCompleted. lt. NumLongitudes)

24. call mpi_probe (MPI_ANY_SOURCE, MPI_ANY_TAG, gce2d_intercomm, pending, status,
ierror)

25. whichColumn = status(MPI_TAG) / 2
26. call mpi_recv(outputValues(whichColumn), … gce2d_intercom ……)

27. call mpi_request_free (request(whichColumn), ierror)

28. numCompleted = numCompleted + 1

29. enddo recvLoop

Figure 6. List 2: pseudocode of the mmf_invoke_gce2d() routine, which addresses distribution of global initial values to
Q mgGCE processes from P fvGCM processes. The fvGCM processes send inputs to mgGCE processes (which run in parallel)
and then receive outputs from them. The fvGCM processes continue to do so until the GCE calculation over the entire globe
(that is, the calculation of the 13,104 GCE copies) is completed. Q is equal or larger than the multiple of P, so Q > = C * P,
where C is an integer.

64 COMPUTING IN SCIENCE & ENGINEERING

sent asynchronously to each mgGCE process’s
input queue.
In the sendRecv loop (lines 8–22), the fvGCM
process checks if any of its mgGCE processes
have produced an output, and if so, sends anoth-
er input piece of work to the mgGCE’s queue.
However, if none of the mgGCE processes

has produced an output, rather than waiting for
the outputs from the mgGCE processes, one
of the fvGCM process pitches in and does
the next piece of work: running a copy of
gce2d(). Then it goes back to checking for
output. The fvGCM processes repeat the
above until all the input has been sent, using
nextColumn to keep track.
In the recvLoop (lines 23–29), the fvGCM
processes keep receiving outputs until all the
output has been received, using numCompleted
to keep track.

During these phases, the matchup between a par-
ticular mpi_[i]send() and a particular mpi_[i]
recv() among fvGCM and mgGCE processes
happens dynamically and asynchronously. Next,
a simple illustration is given.

Let’s assume that an fvGCM process has
(numGce2dTasks, NumLongitudes) to be (3,
144) in List 2. Thus, it interacts with three mg-
GCE processes (we call them AA, BB, and CC in
Figure 8) to dynamically distribute 144 inputs and
finish 144 copies of GCE runs. With depth=3
in the sendLoop (line 1 in List 2), the fvGCM
process initiates nine (depth*numGce2dTasks)

Figure 8. Dynamic distribution of mgGCE input values. Here, we
assume that one specific fvGCM process (at the top, in yellow) has
three mgGCE processes (at the bottom, in brown). The fvGCM
process sends inputs to each of the three mgGCM processes, which
begin processing them (brown). The fvGCM process also queues
additional inputs (blue) for the mgGCE processes. While waiting for
results from the mgGCE process, the fvGCM process can also help
perform a GCE calculation (middle, in yellow). When computations
with inputs in brown are done, the mgGCE process returns results and
begins processing the next input in its queue. On receiving a result,
the fvGCM process queues another input (gray) to whichever mgGCE
process returned the result.

Figure 7. Mapping between P fvGCM process (left) and Q mgGCE processes (right). The fvGCM process
with the rank of J receives a subset of Q mgGCE processes, say, T(J). The choice of T(J) depends on the
amount of work (that is, the number of latitudes) assigned to the fvGCM task, and T J QJ

P ()==∑ 1 . Let S(J)
be the rank of the first mgGCE process (the starting index) in the Jth subset of mgGCE processes, where
S(1) � 1 and S(J � 1) � S(J) � T(J), J � 1, 2,… P � 1.

Rank S(1)
Process 1

P fvGCM Processes Q mgGCE Processes

Process 2

Process 3

Process 13

Process P-1

Process P

Rank S(13)

Rank S(13) + 1

Rank S(1) + 1

Rank S(1) + T(1) – 1

Rank S(13) + T(13) – 1

Rank S(P)

Rank S(P) + 1

Rank S(P) + T(P) – 1

Q–1

Q

....

1

2

3

....

....

....

....

AA BB CC

Colu
mn1

Colu
mn2

Colu
mn3

fvGCM Process + inputs

mgGCE
Processes

Row1 AA BB CC AA BB CC AA BB CC FV

FV

SEPTEMBER/OCTOBER 2013 65

mpi_isend() calls (line 4) to send inputValue
records as follows: the first to AA, the second to
BB, the third to CC, the fourth to AA, the fifth
to BB, the sixth to CC, the seventh to AA, the
eighth to BB, and the ninth to CC. This ends
the sendLoop, and each of the three mgGCE
processes now has three (depth=3) input records
queued up.

Each of these mgGCE processes starts run-
ning the subroutine gce2d() as soon as it re-
ceives input, so the fvGCM process now enters
the sendRecv loop (between lines 8–22) and calls
mpi_iprobe() (line 9) to check for outputs sent
from any of the mgGCE processes. Let’s sup-
pose that none has done so. Rather than wait,
the fvGCM process takes the next piece of input
(the 10th) and calls gce2d() (line 18). When
the fvGCM process finishes and returns, it again
checks for outputs from any mgGCE processes
(line 9). Suppose BB has finished one gce2d()
calculation, and so BB has returned the output
for the second piece. BB then immediately begins
work on its next piece, namely, the fifth piece. As
soon as the fvGCM process sees the existence of
a pending message (the outputs from the mg-
GCE), it calls mpi_recv() (line 13) to receive
the outputs. The fvGCM process can tell it’s the
second piece by looking at the tag value and that
it came from process BB. So the fvGCM process

sends the next piece of input (the 11th) to BB
(line 16) and then returns back to the beginning
of the loop in line 9 to check for outputs from any
mgGCE processes. This loop continues until all
144 pieces of input have been handed out. The
distribution of inputs and GCE runs is handed
out dynamically as each previous piece of work
is finished. The fvGCM process now enters the
recvLoop (line 23). There’s no more input to be
handed out, so the fvGCM process waits until all
the remaining pieces of work have been finished
and returned.

Computational Results
To test our boosted scalability in action, we
ran the improved MMF on the NASA Pleiades
 supercomputer, which is currently one of the
most powerful general-purpose supercomputers
in the world.

The Pleiades supercomputer is an SGI Altix ICE
system with a peak performance of 2.88 Pflop/s.
With 417 Tbytes of total memory, and 162,496
cores (plus 64 GPU nodes, each with 512 CUDA
cores.), it achieves Linpack performance of 1.24
Pflop/s (as of June 2013). The system contains
four different types of Intel Xeon processors—
E5-2680v2 (Ivy Bridge), E5-2670 (Sandy Bridge),
X5670 (Westmere), and X5570 (Nehalem)—to
reach different needs and capacities on different

Figure 9. Parallel scalability of the MMF version 2.0 with a revised parallel implementation on the NASA
Pleiades supercomputer. This figure shows that a speedup of nearly 80� is obtained as the number of cores
increases from 30 to 3,335. Note that the original MMF could use only 30 cores.

120

100

80

60

40

20

0
30 530

19.5

38.5

50.2

79.8

1,030 1,530 2,030 2,530 3,030

fvMMF 2.0

Linear speedup

66 COMPUTING IN SCIENCE & ENGINEERING

NASA projects. We used Nehalem processors in
our benchmark.

Figure 9 shows a benchmark with encouraging
parallel scalability up to 3,335 CPUs on Pleia-
des. Here, the speedup is determined by T30/T,
where T is the wall time to perform a five-day
forecast with the MMF, and T30 is the time
spent using 30 CPUs. We chose the run with 30
CPUs as a baseline because this configuration
was previously used for production runs.9,10 We
obtained a speedup of 3.42, 10.81, 19.46, 38.46,
50.16, and 79.77 by increasing the number of
CPUs from 30 to 91, 273, 546, 1,115, 1,680,
and 3,335 cores, respectively. As the baseline
has load imbalances and excessive memory us-
age in the master process, it isn’t surprising to
obtain a superlinear speedup with lower CPU
counts up to 1,115.

Further analysis of the MMF’s throughput in-
dicates that it takes roughly 41 minutes to finish
a five-day forecast using 3,335 cores, which meets
the requirement for performing real-time nu-
merical weather prediction—that is, completion
of a run within one hour. A three-year simulation
would only take one day to run with 3,335 cores,
as opposed to about 80 days with 30 cores. This
speedup in wall time makes it far more feasible
for increasing the resolution in the fvGCM and
studying TCs’ interannual variability.

I
deally, the parallelism that leads to an ef-
fective 2D domain decomposition in the
mgGCE can be applied to other types of
column-based physics parameterizations.

The approach we described here also lays the
groundwork for more sophisticated modeling to
solve extraordinarily complex problems with ad-
vanced computing power. For example, improved
scalability makes it possible to deploy a more ad-
vanced MMF with the fvGCM at a higher resolu-
tion, say, 0.25° � 0.36°, which has much larger grid
points (721 � 1,000) and thus requires many more
copies of GCEs. In addition, by taking load bal-
ance into consideration, the current implementa-
tion makes it feasible to choose a variety of GCEs
in the mgGCE. Further improvements include
the implementation of an efficient I/O module
or a parallel I/O module with a CPU layout that
could differ from that in either the fvGCM or the
mgGCE.

The current parallel implementation in the
MMF is a coarse-grained parallelism compared
to the parallelism inside a GCE. Because an in-
dividual GCE was previously implemented with

its native 2D domain decomposition, another
level of parallelism (fine-grain parallelism) inside
each copy of the GCE could greatly expand the
number of CPUs for MMF runs. Potentially, the
coupled MMF, along with the mgGCE, could be
scaled at a multiple of 13,104 CPUs, which is a
subject for future study.

Acknowledgments
We’re grateful to the following organizations for their
support: the NASA Earth Science Technology Of-
fice, the Advanced Information Systems Technology
(AIST) Program, the NASA Computational Modeling
Algorithms and Cyberinfrastructure (CMAC) pro-
gram, and the NASA Modeling, Analysis Prediction
(MAP) Program. Resources supporting this work were
provided by the NASA High-End Computing (HEC)
Program through the NASA Advanced Supercomput-
ing (NAS) Division at Ames Research Center. Finally,
we thank Jill Dunbar of NASA ARC/NAS for proof-
reading this manuscript.

References
1. L. Bengtsson, I. Hodges, and M. Esch, “Tropical

Cyclones in a T159 Resolution Global Climate Model:

Comparison with Observations and Re-analyses,”

Tellus A, vol. 59, no. 4, 2007, pp. 396–416.

2. B.-W. Shen et al., “Hurricane Forecasts with a

Global Mesoscale-Resolving Model: Preliminary

Results with Hurricane Katrina,” Geophysical

Research Letters, vol. 33, no. 13, 2006;

doi:10.1029/2006GL026143.

3. B.-W. Shen et al., “Predicting Tropical Cyclogenesis

with a Global Mesoscale Model: Hierarchical Multi-

scale Interactions During the Formation of Tropical

Cyclone Nargis,” J. Geophysical Research, vol. 115,

no. D14, 2010; doi:10.1029/2009JD013140.

4. B.-W. Shen, W.-K. Tao, and B. Green, “Coupling

Advanced Modeling and Visualization to Improve

High-Impact Tropical Weather Prediction (CAMVis),”

Computing in Science & Eng., vol. 13, no. 5, 2011,

pp. 56–67.

5. B.-W. Shen et al., “Genesis of Twin Tropical

Cyclones as Revealed by a Global Mesoscale

Model: The Role of Mixed Rossby Gravity Waves,”

J. Geophysical Research, vol. 117, no. D13, 2012;

doi:10.1029/2012JD017450.

6. B.-W. Shen et al., “Advanced Visualizations of Scale

Interactions of Tropical Cyclone Formation and Tropi-

cal Waves,” Computing in Science & Eng., vol. 15,

no. 2, 2013, pp. 47–52.

7. B.-W. Shen et al., “Genesis of Hurricane Sandy

(2012) Simulated with a Global Mesoscale Model,”

Geophysical Research Letters, vol. 40, 2013, pp. 1–7;

doi:10.1002/grl.50934.

SEPTEMBER/OCTOBER 2013 67

8. D. Randall et al., “Breaking the Cloud Parameteriza-

tion Deadlock,” Bull. Am. Meteorological Soc., vol. 84,

no. 11, 2003, pp. 1547–1564.

9. W.-K. Tao et al., “A Goddard Multi-Scale Modeling

System with Unified Physics,” WCRP/GEWEX Newslet-

ter, vol. 18, no. 1, 2008, pp. 6–8.

10. W.-K. Tao et al., “Multiscale Modeling System:

 Development, Applications and Critical Issues,”

Bull. Am. Meteorological Soc., vol. 90, no. 4, 2009,

pp. 515–534.

11. R. Atlas et al., “Hurricane Forecasting with the High-

Resolution NASA Finite Volume General Circulation

Model,” Geophysical Res. Letters, vol. 32, no. 3, 2005;

doi:10.1029/2004GL021513.

12. W.-K. Tao and J. Simpson, “The Goddard Cumulus

Ensemble Model. Part I: Model Description,” Terres-

trial, Atmospheric and Oceanic Sciences, vol. 4,

no. 1, 1993, pp. 19–54.

13. W.-K. Tao et al., “Convective Systems over South

China Sea: Cloud-Resolving Model Simulations,”

J. Atmospheric Science, vol. 60, no. 24, 2003,

pp. 2929–2956.

14. J.-M. Juang et al., “Parallelization of NASA Goddard

Cloud Ensemble Model for Massively Parallel Com-

puting,” Terrestrial, Atmospheric and Oceanic Sciences,

vol. 18, no. 3, 2007, pp. 593–622.

15. S.-J. Lin, B.-W. Shen, and W. P. Putman, “Application

of the High-Resolution Finite-Volume NASA/NCAR

Climate Model for Medium-Range Weather Predic-

tion Experiments,” EGS-AGU-EUG Joint Assembly,

2003, abstract 1738.

16. W. Putman, S.-J. Lin, and B.-W. Shen, “Cross-Platform

Performance of a Portable Communication Module

and the NASA Finite Volume General Circulation

Model,” Int’l J. High Performance Computing Applica-

tions, vol. 19, no. 3, 2005, pp. 213–223.

Bo-Wen Shen is a research scientist at the Univer-
sity of Maryland, College Park, and NASA Goddard
Space Flight Center. His research interests include
high-resolution global and regional modeling,
high-end computing, and numerical hurricane and
weather prediction. Shen has a PhD in atmospheric
sciences from North Carolina State University. He’s
a member of the American Geophysical Union. Con-
tact him at bowen.shen@gmail.com or bo-wen.
shen-1@nasa.gov.

Bron Nelson is a senior software engineer for Com-
puter Sciences Corporation (CSC) and a member of
the Visualization Group at the NASA Ames Research
Center’s Advanced Supercomputing facility. Bron has
an MS in computer science from the University of Cal-
ifornia, Los Angeles. Contact him at bron.c.nelson@
nasa.gov.

Samson Cheung is a senior software engineer for
Computer Sciences Corporation (CSC) and a mem-
ber of the Application Group at the NASA Ames Re-
search Center’s Advanced Supercomputing facility.
His research interests are in application performance
and parallel I/O on new architectures. Samson has a
PhD in applied mathematics from the University of
California, Davis. Contact him at samson.h.cheung@
nasa.gov.

Wei-Kuo Tao is a senior research meteorologist at the
NASA Goddard Space Flight Center and the leader of
Goddard Mesoscale Modeling and Dynamic Group.
His research interests include cloud physics and mod-
eling mesoscale convective systems. Tao has a PhD
in atmospheric sciences from the University of Illinois.
He’s a Fellow of the American Meteorological Society
and Royal Meteorological Society. Contact him at
wei-kuo.tao-1@nasa.gov.

Selected articles and columns from IEEE Computer

Society publications are also available for free at

http://ComputingNow.computer.org.

NEWSLETTERS
Stay Informed on Hot Topics

computer.org/newsletters

