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ABSTRACT 

 

This paper provides a status update on the implementation of a flexible, long-term space debris simulation approach. 

The motivation is to build a tool that can assess the long-term impact of various options for debris-remediation, 

including the LightForce space debris collision avoidance concept that diverts objects using photon pressure [9].  

 

State-of-the-art simulation approaches that assess the long-term development of the debris environment use either 

completely statistical approaches, or they rely on large time steps on the order of several days if they simulate the 

positions of single objects over time. They cannot be easily adapted to investigate the impact of specific collision 

avoidance schemes or de-orbit schemes, because the efficiency of a collision avoidance maneuver can depend on 

various input parameters, including ground station positions and orbital and physical parameters of the objects 

involved in close encounters (conjunctions). Furthermore, maneuvers take place on timescales much smaller than 

days. For example, LightForce only changes the orbit of a certain object (aiming to reduce the probability of 

collision), but it does not remove entire objects or groups of objects. In the same sense, it is also not straightforward 

to compare specific de-orbit methods in regard to potential collision risks during a de-orbit maneuver. To gain 

flexibility in assessing interactions with objects, we implement a simulation that includes every tracked space object 

in Low Earth Orbit (LEO) and propagates all objects with high precision and variable time-steps as small as one 

second. It allows the assessment of the (potential) impact of physical or orbital changes to any object. The final goal 

is to employ a Monte Carlo approach to assess the debris evolution during the simulation time-frame of 100 years 

and to compare a baseline scenario to debris remediation scenarios or other scenarios of interest. To populate the 

initial simulation, we use the entire space-track object catalog in LEO. We then use a high precision propagator to 

propagate all objects over the entire simulation duration. If collisions are detected, the appropriate number of debris 

objects are created and inserted into the simulation framework. Depending on the scenario, further objects, e.g. due 

to new launches, can be added. At the end of the simulation, the total number of objects above a cut-off size and the 

number of detected collisions provide benchmark parameters for the comparison between scenarios. The simulation 

approach is computationally intensive as it involves tens of thousands of objects; hence we use a highly parallel 

approach employing up to a thousand cores on the NASA Pleiades supercomputer for a single run. 

 

This paper describes our simulation approach, the status of its implementation, the approach to developing scenarios 

and examples of first test runs. 
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1. INTRODUCTION 

This paper describes our progress towards implementing a flexible, open-scenario and long-term space debris 

simulation framework. The goal of this effort is to produce a tool that can project the long-term development of the 

debris environment under various assumptions, e.g. scenarios that include debris mitigation and remediation 

approaches, as well as intentional collisions. 
 

Space debris is a growing problem for active spacecraft. A 2010 study calculated cost increases for several 

representative model satellite constellations due to debris impact [1]. For the specific examples, replacement of 

satellites that are damaged or destroyed through collisions with debris would raise the cost of operating and 

maintaining by 4 to 14 percent, translating to hundreds of millions of dollars over the assumed operational period of 

20 years. Long-term projections predict an increase in the debris population, leading to a further increase of risk and 

cost [2]. The increasing numbers are the result of new launches, spontaneous explosions, and fragmentations 

through collisions between space objects. The latter leads to a cascading effect that was originally predicted by 

Kessler [3] and was also confirmed in various other studies [4]. This Kessler cascade would increase the number of 

debris objects in orbit and increase the collision risk further, even if no more launches occur [2]. 
 

Various methods have been proposed to improve this situation, or at least stabilize the number of debris objects in 

orbit. In order to classify these methods, the first distinction is between debris mitigation and remediation. In the 

space debris community, the term mitigation includes activities that fall under more responsible behavior, e.g. 

preventing accidental explosions and de-orbiting spacecraft at the end of their mission. Activities grouped under the 

term remediation deal with actively engaging existing debris objects. One class of remediation methods focuses on 

the active removal of a number of heavy debris objects from orbit. As they are potential sources of additional debris, 

their active removal can help stabilize the number of debris objects, as shown in simulations. The second class of 

remediation activities are active, externally induced collision avoidance measures, where debris trajectories are 

influenced just in time to avoid collisions [5]. Just in time collision avoidance has the potential to be both of short-

term and long-term use: on the one hand, such a capability can be used to protect active spacecraft; on the other 

hand, each avoided collision reduces the number of additional debris objects created.  

 

Some specific methods for active debris removal include debris removal by sending disposal spacecraft to grab 

objects and de-orbit them, or attaching electrodynamic tethers to debris objects and using the Earth’s magnetic field 

to induce a force that slows debris and leads to deorbit. Methods for active, externally-induced collision avoidance 

include: deploying drag-enhancing mist along the debris trajectory, or the LightForce method that our group has 

been investigating extensively [6,7,8,9]. LightForce uses photon pressure from ground-based lasers to modify the in-

track velocity of space objects. The idea is to apply LightForce in reaction to conjunction warnings and ensure that 

both objects involved in a potential collision do not appear in the same place at the same time. 

 

Assessing the utility and efficiency of a specific remediation method on long time scales is not straightforward. The 

state-of-the-art simulation tool is NASA LEGEND [10,11]. Within a Monte Carlo framework, LEGEND propagates 

every object over a 10cm size cutoff, using large time steps of several days (the default is 5) [11]. In between these 

time steps, a statistical evaluation returns the probability of a collision event which then leads to a random decision 

whether to insert new fragments into the model. Over multiple Monte Carlo runs, this approach provides an average 

projection of the future debris environment. Investigating active debris removal (ADR) in this framework is 

comparably easier than collision avoidance methods, because for ADR a given group of objects is removed from the 

environment at a given time. Investigating collision avoidance, however, is more complicated. Whether a specific 

collision avoidance engagement is successful or not will depend on the specifics of each close encounter between 

objects (a conjunction). For example, success of a LightForce engagement will depend on the masses of the objects 

involved, their orbits, position of laser ground stations and ground station capabilities. The probability of success 

will depend on these and other inputs that cannot be easily derived and hence cannot easily be introduced into a tool 

like LEGEND that uses time steps that are orders of magnitude larger than the actual engagement. 

 

Motivated by our research of the LightForce collision-avoidance scheme and promising results on the 85% fraction 

of conjunctions that can be mitigated in the short term [9], we decided to work towards a long-term debris 

simulation tool that uses time steps on the order of seconds and hence is flexible enough to assess various debris 

remediation schemes, including just-in-time collision avoidance, and can also assess other events and scenarios of 

interest. The following sections describe our simulation approach, the current status of implementation (including 

examples of outputs), and list the planned next steps.  

 



2. SIMULATION APPROACH 

2.1 Introduction and general overview of the simulation approach 

This section outlines the planned implementation of our tool. We start with the general approach and then describe 

the details of the physics and numerical implementation, as well as the approach to data analysis. 

 

The main challenge for long-term debris projections is that single events can determine the state of the entire 

environment. For example, combined, the destruction of the Chinese Fengyun spacecraft in 2007 and the 2009 

collision between Iridium 33 and COSMOS 2251 doubled the population of fragmentation debris in orbit. While the 

first event was probably intentional, the second was one out of tens of thousands of close encounters (conjunctions) 

between objects that occur during a year. The simulation of each event is of a highly statistical nature, as minimal 

changes in initial positions and velocities of space objects, as well as changes in external forces, lead to significant 

changes in future positions that are several orders of magnitude larger than the object sizes. Similarly, changes in 

position on the order of the object size influence the likelihood of a collision. Hence, a Monte Carlo approach is 

needed to produce a projection of a likely future, randomizing initial object states, as it is done in LEGEND.  

 

In order to gain the capability to assess the effect of arbitrary changes to individual space objects onto the 

environment, we choose a simulation approach where every object’s position and velocity are simulated over time in 

high resolution (on the order of seconds, not days). Nikolaev et al. coined this as a brute force approach when they 

implemented a similar approach [12]. This gives the ability to manipulate arbitrary objects as needed to simulate 

collision-avoidance engagements, and also gives further options to simulate other scenarios, e.g. the deployment of 

drag devices or de-orbit maneuvers. Since these events happen on a timescale of seconds, this approach is 

computationally intensive, but allows high precision and maximum flexibility to simulate various engagements and 

events. In addition, the code needs to track and assess all conjunctions (close encounters between objects). In the 

case of collisions, new objects are inserted into the simulation. If objects decay into the Earth’s atmosphere they are 

removed. New launches are added at the appropriate time.  

 

The described work is an extension of the simulation software that was developed for the LightForce efficiency 

assessment described in 2013 and 2014 AMOS papers [8, 9]. The following summarizes the approach described in 

these papers, focusing on the changes in the current software. 

 

2.2 Physics and numerical implementation 

2.2.1 Propagation of space objects 

The simulation framework is initialized by reading in a list of object data, consisting of area-to-mass ratio, area, drag 

coefficient, and the object state vector (position and velocity) at a specific time. Future positions and velocities are 

calculated using a high-precision propagator. The scheme used by the propagator for the numerical integration is a 

4th/5th order Runge-Kutta scheme with variable time step [13,14]. The forces taken into account during the 

propagation include Earth’s gravitational field, the gravitational perturbations from the Moon and the Sun, 

atmospheric drag, and the solar radiation pressure. Space weather and planetary ephemerides are fed into the model 

via input files, as described in section 3.2.4 (scenario development). The numerical implementation is built around 

the NAIF SPICE Toolkit [15] and the physical model used for each force is referenced in Table 1. 

We validated our propagator against STK’s HPOP, an industry standard. The propagator is configured to 

dynamically adjust its integration time steps to maintain a specified relative error tolerance. That means that the 

propagator is "running free", producing a new position/velocity point for an object whenever it is appropriate. These 

calculations are done in parallel on multiple processors. 

 

Table 1:  Forces taken into account in the dynamical modeling of the debris and the models used for their 

numerical implementation. 

Force Numerical implementation Reference 

Earth’s Gravitational Field Earth Gravitational Model 1996 (EGM96) [16] 

Luni-Solar Perturbations NASA JPL Planetary Ephemerides [17] 

Atmospheric Drag NRL-MSISE-00 model [18] 

Solar Radiation Pressure Debris modeled as a sphere, eclipses taken into account [19] 

Laser Radiation Pressure In-house model [6] 

 



In addition to standard propagation in a gravity field with atmospheric drag, the propagator can add additional 

forces. For example, LightForce is already implemented and can be activated as needed for a specific scenario. 

LightForce adds photon pressure from a laser ground station, whenever access is available, and the additional force 

is able to reduce the probability of an upcoming collision. For future revisions of the software, one could force the 

propagator to follow a predefined trajectory for an object, e.g. to implement specific de-orbit maneuvers or foul 

play. Another option to be implemented is the capability to change object properties at given times, e.g. to account 

for the deployment of drag-enhancing devices at the end of a spacecraft’s mission.  

  

To simulate collisions, spontaneous explosions, and new launches, there is a requirement to add and delete objects 

dynamically during an ongoing simulation run. The simulation framework is designed to allow for addition and 

deletion of objects that either occur at a certain time as defined by input files, or internally. Internal deletions happen 

when objects deorbit below a cut-off altitude, or when explosions or collisions occur. Spontaneous explosions are 

triggered randomly, as described in section 3.2.3. The original object will be deleted and replaced by a debris cloud 

predicted by the NASA standard breakup model (see section 2.2.3 for details). The same approach for object 

deletion and creation is taken for object fragmentations that are caused by collisions between objects.  

 

2.2.2 Conjunction analysis 

In order to detect collisions in the simulation, the code performs an all-on-all conjunction analyses. That means, 

object positions are checked against each other as time progresses. The analysis time-step size determines the time 

interval that the code is checking for conjunctions and is independent of the propagator time-steps, which differ for 

each object. During each analysis time step, the propagator produces a limited time series of state vectors for each 

object, referred to as anchor points. With the anchor points in hand, each CPU core uses spline interpolation to 

determine the position of all objects for the beginning of the current time-step of the conjunction analysis. These 

positions are then sorted along one axis of the coordinate frame. The code then does collision detection. Each core 

assigns itself a subset of the objects, and decides if an object might possibly interact with some other object during 

the current time step. If that is the case, the distance at the time of closest approach is calculated. 

 

To calculate both the distance and the time of closest approach we use an algorithm that uses spline interpolation 

between the state vectors of the two objects at times t1 and t2 [19, p. 919-937]. Acquiring these state vectors is not 

trivial: As the propagator is using variable time steps, the high-precision anchor points appear at different times for 

each object (see figure 1). It is extremely unlikely that the propagator produces anchor points for the same times. 

Hence we use the last anchor point outside the time step of interest to choose t1. That state vector could either belong 

to the first or second object. We then generate the state vector of the second object at t1 using spline interpolation. 

For t2, we chose an existing anchor point as well. The state vector of the second object at t2 is determined by spline 

interpolation again. The resulting four state vectors (two for each object) are used to determine the time of closest 

approach, the miss distance and state vectors at that time. The code also returns the probability of collision, using 

covariances that can be provided by the input files. As all related calculations are computationally expensive, the 

code first uses a couple of simple tests to try and (cheaply) eliminate the possibility that the two objects could 

interact during the investigated time step.  

 

Note that the method for producing the t1 and t2 state vectors is independent of the size of the analysis time-step, 

depending only on the anchor points produced by the propagator. This enables the simulation to dynamically vary 

the size of an analysis time-step for optimal speed, yet still maintain exact bitwise reproducibility.  

 

 

 

Figure 1: High precision state vectors produced by the propagator (anchor points) and interpolated state vectors 

during conjunction analysis  
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2.2.3 Fragmentation through Collisions and Explosions 

Fragmentation can occur either through spontaneous explosions or collisions. The process of randomly triggering 

explosions is dependent on the input scenario, as described in section 3.2.3. To trigger collision fragmentation, we 

use the (miss) distance between objects at time of closest approach as the final benchmark to decide whether a 

collision has occurred. If the distance is closer than the combined object radii, fragmentation is initiated. This 

method is the same as used by Nikolaev [12]. It has the advantage that it is independent of state covariances, which 

might not be accurate. While (even with perfect initial states) the propagator is not able to predict an object position 

with an accuracy that is comparable to the object size, this method still gives reasonable results in combination with 

the Monte Carlo method, because uncertainties are modeled through the inherent randomness of the method [12].  

 

The inserted debris clouds for both explosions and collisions are created using the approach outlined in the NASA 

EVOLVE 4.0 breakup model [20, 21]. We make the following three implementation choices: 1) EVOLVE provides 

area-to-mass distributions for fragments that are smaller than 8 cm and larger than 11 cm, but not between 8 cm and 

11 cm. In order to close the gap we chose randomly between one of the two distributions. 2) Velocity change for the 

objects in the fragment cloud is assigned using the distributions given by EVOLVE. The direction of the velocity 

change is randomly assigned. 3) For explosions, we determine the number and size of pieces using a scaling factor 

S=1, which is valid for upper stages between 600-1000 kg. 

 

2.3 Data products and analysis 

During a simulation run, all conjunctions above a user-definable probability of collision and miss distance threshold 

are tracked. The probability of collision [22] and the state vectors of the objects involved are stored. The simulation 

code also tracks the number of objects in orbit, divided by object class, i.e. debris, spacecraft and rocket bodies. New 

debris objects that are created during a simulation run are categorized by debris objects that are created by 

explosions and by collisions. In addition, state vectors of all objects involved in breakups are stored at the time of 

the breakup event. Finally, the simulation periodically stores state vectors of all objects with additional data 

including potential de-orbit time and the parent objects of newly created fragments.  

 

The combined data products enable various analyses: On a global level, the development of object numbers over 

time gives insight into the development of populations and the influence of debris mitigation or remediation 

measures. The number of conjunctions gives a first insight into the development of collision risk. Tracking the 

probability of collision for each conjunction enables more sophisticated analyses, e.g. tracking the cumulative value. 

More detailed analyses for a class of spacecraft, a specific constellation or a specific spacecraft are possible as well, 

always comparing different scenarios or a different time frame in a specific scenario. 

 

A Monte Carlo analysis of multiple simulation runs is the preferred method to gain information on simulation 

uncertainties. However, a single run does represent one possible future and can also provide insights in a specific 

scenario, e.g. the number of expected conjunctions given a specific population on orbit.  

 

3. STATUS OF IMPLEMENTATION AND SCENARIO DEVELOPMENT 

3.1 Current status of software implementation 

The simulation framework is currently utilizing the NASA Ames Pleiades supercomputer. As of August 2015, the 

Pleiades supercomputer consists of a total of 207,501 cores, distributed over a mix of the following types of Intel 

Xeon processors: E5-2680v3 (Haswell), E5-2680v2 (Ivy Bridge), E5-2670 (Sandy Bridge), and X5670 (Westmere). 

The system is an SGI ICE cluster connected with InfiniBand in a dual-plane hypercube technology. 

 

The software is implemented in C and C++ and uses the standard Message Passing Interface (MPI) for 

parallelization. Production of (high precision propagator) anchor points is done fully in parallel, with each MPI rank 

doing propagation on a subset of the satellites, and then exchanging the results with the other ranks. When complete, 

each MPI rank has the full set of information about every satellite. Conjunction analysis is conducted only partly in 

parallel, as described in section 2.2.2. 

 

Currently, the software is ready to produce data of single runs. A Monte Carlo wrapper has not yet been 

implemented. The data shown in what follows thus represents “one possible future”, but not an average projection 

with error bounds.  

 



3.2 Scenario development 

3.2.1 Initial population 

The first step to develop a scenario is to generate a population of space objects at the beginning of the simulation 

period. The code accepts a list of objects that includes object state (position and velocity), area-to-mass ratios, area, 

ballistic coefficient and reflectivity, the state covariance and the epoch for that data. For statistical purposes, we also 

provide the object type (rocket body, spacecraft or debris).  

 

To create that list we are currently using the following four step process: 

1) Create object population from TLEs: For a given date (in this case June 15, 2015) we utilize the publicly 

available two-line element (TLE) orbital data from the Joint Space Operations Center (JSpOC) and select 

all objects with a perigee below 1800 km [23]. For each object the catalog provides a unique identifier, the 

object type and the orbital elements at a given epoch. Unfortunately, the catalogue does not directly provide 

an area-to-mass ratio. Also, single TLEs are error prone and have limited accuracy. To improve the quality, 

we use least-squares fitting of TLE data as described by Levit and Marshall [24] to obtain an improved 

state vector, an area-to-mass ratio guess and a covariance uncertainty matrix. The method is described in 

more detail in [8]. Out of 12725 records for objects in LEO, a successful fit was provided for 10256 

objects. For the remaining objects we use a direct translation from TLE to state vector and assign a 

covariance matrix corresponding to the average covariance of the successfully fitted objects. 

2) Correct area-to-mass ratio: The area-to-mass ratio guesses from step 1 are not accurate enough to result 

in reasonable object life times for approximately 30% of the objects. To increase the accuracy of the area-

to-mass ratio over the method described in [8], we use a list of area-to-mass ratios provided by our 

colleague Wang Ting (Princeton). He uses on average 500 TLEs to determine the area-to-mass ratio 

through fitting the semi-major axis decay of an object and also provides an RMS error of that fit. From his 

list, we removed 275 entries where the relative RMS error of the fit is larger than one, as well as 113 entries 

for negative area-to-mass ratios, the latter indicating maneuverable spacecraft. In total, we can match 11050 

objects from the 12725 objects from step 1. Out of the remaining 1675, we provide values for about 70 of 

the 113 maneuvering spacecraft from a 2008 snapshot of ESA DISCOS data [25], using the average 

between the provided minimum and maximum area and the mass at beginning of life. For the rest we draw 

random area-to-mass ratios from objects belonging to the same class (rocket body, spacecraft or debris) as 

the object with the missing data. For example, for each spacecraft with unknown area-to-mass ratio we 

assign the area-to-mass ratio of a random spacecraft with known data. Using that approach we preserve the 

original area-to-mass distributions. 

3) Translate RCS to area: The cross-sectional areas of the objects are assigned using radar cross-sections 

(RCS) in a first step. Space-track provided that data until July 2014. We convert RCS to a physical cross-

section using the method given in [26]. After July 2014, space-track has been providing only classifications 

into “small”, “medium” and “large” RCS. These groups correspond to defined RCS bins. For all new 

objects with only classifications but no specific RCS data, we draw one existing RCS out of the appropriate 

group of “small”, “medium” and “large” objects, and translate that to a physical size.  

4) Correct area for intact objects: The method described in [26] to translate RCS to physical size was 

developed for debris (using samples from hypervelocity impacts) and is not necessarily accurate for intact 

spacecraft and rocket bodies. Hence we replace the cross section for intacts with data from the 2008 

DISCOS snapshot [25]. We find matching data for 2416 out of 3481 entries for rocket bodies and 

spacecraft. We translate the average dimension into an area, only omitting the IMAGE and Picosat 1&2 

spacecraft. IMAGE is equipped with 4 250m radial antennas, which would translate into an unrealistic area. 

Picosat 1&2 are tethered. If no data is available, we keep the data derived from RCS data. 

For ballistic coefficient we assign 2.2 and 1 for reflectivity. Future work would include incorporating updated 

DISCOS data, as well as other available data for known objects. 

 

 

 



3.2.2 Future launches 

On top of the current population of objects, future launches will put additional rocket bodies and spacecraft into 

orbit. The code accepts a list for future launches that is mostly identical to the one provided for the initial 

population. Instead of the epoch time for the fit, this file provides a date and time that specifies when the object is to 

appear in the simulation.  

 

There are several options to create a future launch scenario. The simplest option is to set future launches to zero. A 

common practice for long-term space debris simulations to define a period of time (e.g. the last 10 years before the 

start of the simulation) and use the list of objects launched within this period recurrently as a forecast until the end of 

the simulation period. Although this method may provide reasonable future scenarios in a stable environment, the 

current satellite market is going through a transformation where commercial “new space” companies have started to 

dominate the numbers of newly launched spacecraft. We chose to develop a scenario based on the assumption that 

these new companies thrive. 

 

To develop an optimistic “new space” scenario, we systematically gather available data on future launches and 

collect it in a database. We aim to build a database that covers all the publicly available launch related information 

regarding the companies which intend to launch satellites into Low Earth Orbit (LEO) between 2015-2030. These 

companies/constellations include, but are not limited to, Blacksky, CICERO, EROS, Landmapper, Leosat, 

Northstar, O3b, OmniEarth, OneWeb, Orbcomm, OuterNet, PlanetIQ, Planet Labs, Radarsat, RapidEye Next 

Generation, Sentinel, Skybox, SpaceX, and Spire. Data is gathered either through direct contact with the company or 

from online resources (i.e. company press releases, published interviews). Information collected includes statements 

on the number of launches for each year between 2015-2030, information on the number of orbital planes the 

constellation will be distributed to, as well as apogee, perigee, inclination, spacecraft mass and area. Whenever data 

are not available, estimations were made considering the constellation’s purpose and company’s previous missions, 

if any. The database also takes into account possible newcomers into commercial earth observation and 

telecommunication markets as well as the replenishment launches of the current and upcoming constellations. Figure 

9 below shows a summary graph generated from that information for the time between 2015-2030. 

  

Launched rocket bodies are strongly correlated to the number of spacecraft. However, another trend is that more 

spacecraft are being carried as secondary payloads or are deployed from the International Space Station. Therefore 

we decided to use the historical positive-sloped trend for launched rocket bodies as a baseline and add 

approximately 30 launches per year on top of that baseline starting from 2017, to account for the new constellations. 

Not all of these rocket bodies decay naturally. Our analysis of the online satellite catalog (SATCAT) data [23] 

shows that between 2007-2015 around 25% of the upper stages in LEO decayed within the first 10 days after their 

launch date. 
  

 
 

Figure 2: Optimistic “New Space” spacecraft launch scenario data built on compiled data on announced satellite 

launches to LEO 
 



Assuming a positive trend, with more strict rules and potential use of reusable launchers; we build the scenario 

around an assumption that 30% are de-orbited and 70% of rocket bodies naturally decay. The total number is plotted 

in figure 3. The apogee, perigee, and inclination data for these objects were estimated in correlation with the 

information gathered on announced spacecraft launches and the historical trends. For modeling 2030 onward, 

available information is increasingly sparse. Therefore we chose to build the scenario extrapolating the 2015-2030 

data on yearly basis.  

 

The compiled list of predictions for satellites and rocket bodies with their annual number estimates, as well as their 

apogee, perigee, inclination, mass, and area information needs to be transformed into an input file for the orbit 

propagator. An automated script was built to pull the necessary parameters from the launch database and convert 

them into a suitable format for the simulation.  

 

The script converts the estimated Keplerian elements of each object into Cartesian position and velocity state vectors 

at the predicted launch epoch. The database does not provide details on the orbits, hence, the argument of periapsis, 

eccentricity, true anomaly and Right Ascension of the Ascending Node (RAAN) were assigned randomly using 

uniform distributions within the domains of each element. For Sun-Synchronous orbits, the script calculates the 

required inclination depending on the altitude and eccentricity of the object. 

 

Launch epoch dates were assigned randomly within the launch year for each constellation from the database. The 

approach assigned a maximum of 15 objects for the same launch. Additional parameters, i.e. area-to-mass ratios, 

drag coefficient and reflectivity are assigned to each object according to their physical specifications. The positional 

covariance matrix was set to an average for all new objects. In order to calculate this average, the full set of objects 

from the June 2015 initial population is used. 

 

3.2.3 Spontaneous on orbit explosions 

Another source of orbital debris is spontaneous in-orbit explosions. In order to set a probability for those events, we 

evaluate the list of explosions given in the 14th edition of NASA’s “History of On-Orbit Satellite Fragmentations” 

report [27]. On a yearly basis, this comprehensive list is correlated with the number of objects on orbit to obtain a 

measure for the probability of such an explosion. Figure 4 shows a general trend to a lesser probability of explosion 

per object over time for both rocket bodies and spacecraft. The x-axis shows the time in 5-year blocks, where the 

first period refers to the slot between 1963-1967, the second to 1968-1972, and so on. We fit that data to an 

exponential function. This function is used in the scenario to randomly trigger explosions, using the time-dependent 

number of rocket bodies and spacecraft as input. 

 

 

 

 
 

Figure 3: Optimistic “New Space” scenario for launched rocket bodies 

 



  
 

Figure 4: Number of explosions divided by objects on orbit over time for satellites and rocket bodies. Period 1 

referes to the slot between 1963-1967, period 2 to 1968-1972, ... . Exponential fit added. 

 

3.2.4 Space Weather and SPICE files 

In order to allow long term simulations over a 100 year time frame, both the space weather input and the NAIF 

SPICE input data need to be provided.  

 

The space weather data, which is needed to model the atmosphere’s response to the Sun’s activity, has to be 

projected up to July 2115. Our method of extending this data is purely statistical, not physical, and so will not 

capture all of the intricacies of the Sun. However, it should still capture the general trends, such as periodic 

variability with the Solar cycle, along with the large degree of day-to-day variation seen in observational data. 

 

The method implemented here makes use of a significant amount of observational data, obtained from [28]. This 

data extends from January 1st 1957 to July 10th 2015, covering 4 complete cycles (minima and maxima). The data 

necessary for the NRL-MSISE-00 is the daily value of the 10.7cm flux (F10.7), along with the 81-day centered 

average of F10.7, and the daily values of the planetary index Ap in 3 hour intervals and a daily average. 

 

In order to generate reasonable data for F10.7, we first determine its period by fitting a cosine function to the data:  

𝑓 𝑥 = 𝑎1 cos 𝑎2𝑥 + 𝑎3 + 𝑎4 . 

The period is 10.79 years. The observational data includes four complete cycles, which we use. For the future date 

of interest, we use the corresponding dates in all four of these cycles and consider a 6 month interval centered on 

these dates. Combining these intervals, we have a distribution of F10.7 values, from which we select a value at 

random for our future date of interest. The use of such large intervals is an attempt to mirror the short-term 

variability of F10.7 by providing as many potential values as possible. The results of this technique are shown in 

Figure 12. The 81-day centered averages are produced from that dataset we create. At the end of the dataset the 

input interval for each if those averages is reduced to the remaining values. 

 

For the planetary index Ap we find no obvious repeating pattern. Hence, we use the observational data to create a 

probability distribution (table 3). According to this distribution an appropriate number of integers are randomly 

drawn out of each interval. 

 

It should be noted that the use of daily values would be the ideal method of implementing this data. However, to 

reduce strain during data lookup, we approximate the data by using the values on the first day of each month as 

constant throughout that month. This still produces reasonable results, with the average altitude of the same object 

after a year differing by only tens of meters using the two methods. 

 

In addition to the space weather, the NAIF SPICE toolkit needs planetary ephemerides and Earth orientation input 

data, which were provided by the JPL/NAIF team. 



 

 

 

 

 
 

 

Figure 5: Predicted values of F10.7 up to December 31st 2115. Note our curve appears “thicker” than the observed data. This 

is likely due to the fact that our data varies more than the observational data, given that it was produced by a statistical 

technique. For instance, the value of F10.7 on any given day has no bearing on the value the following day, which is unlikely 

to be the case in reality. For a similar reason, our data contains no relatively quiet Solar maxima, despite two appearing in the 

observational data (including the current one). This is because values from more active maxima are more likely to be 

selected. So even if a value from a quiet maximum is selected for one day, the next day, a value from an active maximum 

will likely be drawn. 

 

 

Table 2: Observed historical distribution of the planetary index Ap and average difference of the implemented 

data to the historical observations 

 

Interval Proportion in 

Observations 

Average Difference from 

Observed Proportion 

0-10 52.732% 3.66% 

10-20 28.372% 6.95% 

20-40 14.265% 3.741% 

40-80 3.741% 0.082% 

80-120 0.614% 0.033% 

120-160 0.171% 0.017% 

160-200 0.067% 0.01% 

200-240 0.024% 0.003% 

240-280 0.009% 0.006% 

 



3.3 Example simulations 

In the following section we provide three examples of data products generated by the current software 

implementation. For all cases, we use the environmental data as described in the last section. 

  

Example 1: Decay of the June 2012 debris population, ignoring any future collisions or explosions 
 

Figure 5 shows a plot of the debris population over time. The initial input was the June 2012 debris population from 

the spacetrack catalogue [23], using steps one to three from section 3.2.1 for data conditioning. Collision and 

explosion functionality had been disabled for this specific simulation run. Hence, figure 6 shows the natural decay of 

debris objects. The periodic changes in decay rate are a result of the influence of the solar cycle on the drag caused 

by the upper atmosphere. 

 

Example 2: LEO population for optimistic “New Space” scenario including collisions and explosions 
 

For the data plotted in figure 7, full collision and explosion functionality of the code are enabled. The initial 

population is using the space-track catalogue from June 2015 and full data conditioning as detailed in steps 1 to 4 in 

section 3.2.1. On top of that initial population we are introducing additional objects to the population over time, 

based on the results of the projections described in section 3.2.2. This assumes a thriving “New Space” economy, 

fulfilling currently announced plans for new satellite constellations and the required replenishing launches to keep 

them operational. This accounts for approximately 900 launched spacecraft per year. In this (singular) simulation 

run, the first collision occurs in late 2023. It involves two rocket bodies at 850 km, producing over 5000 pieces of 

debris. Further major collisions occur in late 2029, early 2030, 2034 and 2035. 

 

 

Example 3: Number of LEO conjunctions for optimistic“New Space” scenario 
 

This example uses the same scenario as in example 2. Figure 8 shows the number of conjunctions with a probability 

of collision larger than 10-4 in each year. There is an obvious increase over the years. The absolute maximum in 

2023 is caused by follow up conjunctions after the initial collision.  

 

 

 

 
Figure 6: Number of debris objects in Low Earth Orbit over time. Collisions and explosions are disabled.  
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Figure 7: Number of debris objects in Low Earth Orbit over time for a single simulation run using the 

 optimistic “New Space” scenario. 

 

 

 

 

 
Figure 8: Number of conjunctions with a probability of collisions larger than 10-4 for one run of the 

 optimistic “New Space” scenario. 
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4. NEXT STEPS 

While single runs already provide interesting information, e.g. about the total number of conjunctions in a certain 

debris environment, error bounds and average projections can be obtained with a full Monte Carlo treatment. 

Implementing that will be our main task for the future. 

 

Further steps aim to increase flexibility in scenario development. We want to: 

 Enable execution of predefined trajectories (e.g. for launches or de-orbit maneuvers), 

 Enable changing object properties at given times (e.g. to simulate attachment of tethers or drag 

enhancement devices), and 

 Increase the number of objects that can be simulated to enable the assessment of an environment with more 

particles or with broader knowledge of smaller particles. 

 

5. CONCLUSION 

We described our chosen methodology for a flexible, open scenario space debris simulation software, as well as its 

current status of implementation. We are using a highly parallel simulation approach that utilizes NASA’s Pleiades 

supercomputing cluster. The current implementation propagates all objects in the simulation with a high precision 

propagator. Time steps are chosen dynamically, and determined by the chosen relative tolerance setting. We further 

described our approach for the development of input scenarios that includes both the current space environment, 

including spacecraft, rocket bodies and debris and also projects future launches. For the future launches we detailed 

one specific scenario that assumes a successful development of the current “New Space” economy. We provided 

examples of data outputs of the current software suite. 
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