4,037 research outputs found

    Applicability of the Fisher Equation to Bacterial Population Dynamics

    Full text link
    The applicability of the Fisher equation, which combines diffusion with logistic nonlinearity, to population dynamics of bacterial colonies is studied with the help of explicit analytic solutions for the spatial distribution of a stationary bacterial population under a static mask. The mask protects the bacteria from ultraviolet light. The solution, which is in terms of Jacobian elliptic functions, is used to provide a practical prescription to extract Fisher equation parameters from observations and to decide on the validity of the Fisher equation.Comment: 5 pages, 3 figs. include

    Pattern formation on the surface of cationic-anionic cylindrical aggregates

    Full text link
    Charged pattern formation on the surfaces of self--assembled cylindrical micelles formed from oppositely charged heterogeneous molecules such as cationic and anionic peptide amphiphiles is investigated. The net incompatibility χ\chi among different components results in the formation of segregated domains, whose growth is inhibited by electrostatics. The transition to striped phases proceeds through an intermediate structure governed by fluctuations, followed by states with various lamellar orientations, which depend on cylinder radius RcR_c and χ\chi. We analyze the specific heat, susceptibility S(q)S(q^*), domain size Λ=2π/q\Lambda=2\pi/q^* and morphology as a function of RcR_c and χ\chi.Comment: Sent to PRL 11Jan05 Transferred from PRL to PRE 10Jun0

    Mass fluxes and isofluxes of methane (CH4) at a New Hampshire fen measured by a continuous wave quantum cascade laser spectrometer

    Get PDF
    We have developed a mid‐infrared continuous‐wave quantum cascade laser direct‐absorption spectrometer (QCLS) capable of high frequency (≥1 Hz) measurements of 12CH4 and 13CH4 isotopologues of methane (CH4) with in situ 1‐s RMS image precision of 1.5 ‰ and Allan‐minimum precision of 0.2 ‰. We deployed this QCLS in a well‐studied New Hampshire fen to compare measurements of CH4 isoflux by eddy covariance (EC) to Keeling regressions of data from automated flux chamber sampling. Mean CH4 fluxes of 6.5 ± 0.7 mg CH4 m−2 hr−1 over two days of EC sampling in July, 2009 were indistinguishable from mean autochamber CH4 fluxes (6.6 ± 0.8 mgCH4 m−2 hr−1) over the same period. Mean image composition of emitted CH4 calculated using EC isoflux methods was −71 ± 8 ‰ (95% C.I.) while Keeling regressions of 332 chamber closing events over 8 days yielded a corresponding value of −64.5 ± 0.8 ‰. Ebullitive fluxes, representing ∼10% of total CH4 fluxes at this site, were on average 1.2 ‰ enriched in 13C compared to diffusive fluxes. CH4 isoflux time series have the potential to improve process‐based understanding of methanogenesis, fully characterize source isotopic distributions, and serve as additional constraints for both regional and global CH4 modeling analysis

    An Assessment of Tire-Buying Among Millennial Consumers

    Get PDF
    This study first examines general purchasing trends among millennial consumers before digging into the perceptions that millennial consumers have of the tire-purchasing experience. Our initial hypothesis was that the negative view of tire-purchasing held by many millennial age consumers was driven by the difficulty of the process itself. Through our own research, we discovered that it is the perceptions held by those who have not yet purchased tires rather than the reality of the purchasing experience that is the issue

    Population Dynamics and Non-Hermitian Localization

    Full text link
    We review localization with non-Hermitian time evolution as applied to simple models of population biology with spatially varying growth profiles and convection. Convection leads to a constant imaginary vector potential in the Schroedinger-like operator which appears in linearized growth models. We illustrate the basic ideas by reviewing how convection affects the evolution of a population influenced by a simple square well growth profile. Results from discrete lattice growth models in both one and two dimensions are presented. A set of similarity transformations which lead to exact results for the spectrum and winding numbers of eigenfunctions for random growth rates in one dimension is described in detail. We discuss the influence of boundary conditions, and argue that periodic boundary conditions lead to results which are in fact typical of a broad class of growth problems with convection.Comment: 19 pages, 11 figure

    Machine learning algorithms performed no better than regression models for prognostication in traumatic brain injury

    Get PDF
    Objective: We aimed to explore the added value of common machine learning (ML) algorithms for prediction of outcome for moderate and severe traumatic brain injury.Study Design and Setting: We performed logistic regression (LR), lasso regression, and ridge regression with key baseline predictors in the IMPACT-II database (15 studies, n = 11,022). ML algorithms included support vector machines, random forests, gradient boosting machines, and artificial neural networks and were trained using the same predictors. To assess generalizability of predictions, we performed internal, internal-external, and external validation on the recent CENTER-TBI study (patients with Glasgow Coma ScaleResults: In the IMPACT-II database, 3,332/11,022 (30%) died and 5,233(48%) had unfavorable outcome (Glasgow Outcome Scale less than 4). In the CENTER-TBI study, 348/1,554(29%) died and 651(54%) had unfavorable outcome. Discrimination and calibration varied widely between the studies and less so between the studied algorithms. The mean area under the curve was 0.82 for mortality and 0.77 for unfavorable outcomes in the CENTER-TBI study.Conclusion: ML algorithms may not outperform traditional regression approaches in a low-dimensional setting for outcome prediction after moderate or severe traumatic brain injury. Similar to regression-based prediction models, ML algorithms should be rigorously validated to ensure applicability to new populations. (C) 2020 The Authors. Published by Elsevier Inc.</p

    Mechanotransduction: use the force(s).

    Get PDF
    Mechanotransduction - how cells sense physical forces and translate them into biochemical and biological responses - is a vibrant and rapidly-progressing field, and is important for a broad range of biological phenomena. This forum explores the role of mechanotransduction in a variety of cellular activities and highlights intriguing questions that deserve further attention

    Gas-Kinetic-Based Traffic Model Explaining Observed Hysteretic Phase Transition

    Full text link
    Recently, hysteretic transitions to `synchronized traffic' with high values of both density and traffic flow were observed on German freeways [B. S. Kerner and H. Rehborn, Phys. Rev. Lett. 79, 4030 (1997)]. We propose a macroscopic traffic model based on a gas-kinetic approach that can explain this phase transition. The results suggest a general mechanism for the formation of probably the most common form of congested traffic.Comment: With corrected formula (3). For related work see http://www.theo2.physik.uni-stuttgart.de/helbing.htm

    Scaling of the buckling transition of ridges in thin sheets

    Full text link
    When a thin elastic sheet crumples, the elastic energy condenses into a network of folding lines and point vertices. These folds and vertices have elastic energy densities much greater than the surrounding areas, and most of the work required to crumple the sheet is consumed in breaking the folding lines or ``ridges''. To understand crumpling it is then necessary to understand the strength of ridges. In this work, we consider the buckling of a single ridge under the action of inward forcing applied at its ends. We demonstrate a simple scaling relation for the response of the ridge to the force prior to buckling. We also show that the buckling instability depends only on the ratio of strain along the ridge to curvature across it. Numerically, we find for a wide range of boundary conditions that ridges buckle when our forcing has increased their elastic energy by 20% over their resting state value. We also observe a correlation between neighbor interactions and the location of initial buckling. Analytic arguments and numerical simulations are employed to prove these results. Implications for the strength of ridges as structural elements are discussed.Comment: 42 pages, latex, doctoral dissertation, to be submitted to Phys Rev

    Piglet Immunization with a Spike Subunit Vaccine Enhances Disease by Porcine Epidemic Diarrhea Virus

    Get PDF
    Immunization with an insect cell lysate/baculovirus mixture containing recombinant porcine epidemic diarrhea virus (PEDV) spike protein induced high levels of neutralizing antibodies in both mice and piglets. However, immunization of piglets with this vaccine resulted in enhancement of disease symptoms and virus replication in vaccine recipients exposed to PEDV challenge. Thus, these observations demonstrate a previously unrecognized challenge of PEDV vaccine research, which has important implications for coronavirus vaccine development
    corecore