1,187 research outputs found

    Covalent organic frameworks and organic cage structures

    Get PDF
    The last 20 years have seen an enormous interest in research on the topic of crystalline porous framework materials, especially metal–organic frameworks (MOFs). MOFs exploit reversible metal–coordination chemistry to create extended, crystalline solids.1 However, a similar set of porous ordered covalent networks based on the reversible and modular connection of a vast array of rigid and symmetrical building blocks through covalent bonds has also emerged during this time. These materials, coined as “Covalent Organic Frameworks (COFs)”, have summoned considerable attention in the last decade, starting with a significant contribution from the Yaghi group,2 owing to their unique designing features as well as enormous potential.3 Like COFs, porous molecular crystals that are not interconnected by covalent bonding have also picked up significant research interest. Although these materials do resemble COFs, unlike COFs, they can be solution processable.4 For any structural chemists, these materials are excellent tools that can lead to more informed design processes and create a deeper understanding of how targeted porous extended structures should be made

    Organic Matter Preservation and Incipient Mineralization of Microtubules in 120 Ma Basaltic Glass

    Get PDF
    Hollow tubular structures in subaqueously-emplaced basaltic glass may represent trace fossils caused by microbially-mediated glass dissolution. Mineralized structures of similar morphology and spatial distribution in ancient, metamorphosed basaltic rocks have widely been interpreted as ichnofossils, possibly dating to similar to 3.5 Ga or greater. Doubts have been raised, however, regarding the biogenicity of the original hollow tubules and granules in basaltic glass. In particular, although elevated levels of biologically-important elements such as C, S, N, and P as well as organic compounds have been detected in association with these structures, a direct detection of unambiguously biogenic organic molecules has not been accomplished. In this study, we describe the direct detection of proteins associated with tubular textures in basaltic glass using synchrotron X-ray spectromicroscopy. Protein-rich organic matter is shown to be associated with the margins of hollow and partly-mineralized tubules. Furthermore, a variety of tubule-infilling secondary minerals, including Ti-rich oxide phases, were observed filling and preserving the microtextures, demonstrating a mechanism whereby cellular materials may be preserved through geologic time

    Titanite Mineralization of Microbial Bioalteration Textures in Jurassic Volcanic Glass, Coast Range Ophiolite, California

    Get PDF
    Volcanic glasses are rarely preserved in the rock record, and the quality of preservation generally declines with increasing age. Records preserved in ancient basaltic glasses therefore provide important links between processes operating in the distant past, and those that are active on the Earth today. Microbial colonization has been linked to the formation of characteristic structures in basaltic glass, including tubules and granule-filled tubules, which are thought to be produced by microbially mediated glass dissolution. Structures of similar occurrence and morphology but filled almost entirely with fine-grained titanite have been documented in some ancient metabasalts. It has been suggested that the ancient titanite-mineralized structures are mineralized equivalents of hollow tubules in modern glassy basaltic rocks, but a direct link has not been firmly established. We report the discovery of tubular bioalteration structures in fresh and minimally altered basaltic glasses of middle Jurassic (164 Ma) age from the Stonyford Volcanic Complex (SFVC), Coast Range Ophiolite, California. Tubular structures hosted in unaltered basaltic glass are typically hollow, whilst those in zones of zeolitic alteration are mineralized by titanite. Tubules are continuous across zeolite-glass interfaces, which mark an abrupt change from titanite-filled to hollow tubules, demonstrating that titanite growth occurs preferentially within pre-existing tubular structures. Titanite mineralization in the SFVC represent a link between tubular structures in modern basaltic glass and titanite-mineralized features of similar morphology and spatial distribution in ancient metabasalts. Our observations support a link between textures in modern glassy basaltic rocks and some of the oldest-known putative ichnofossils

    Dietary acid load and chronic kidney disease among adults in the United States

    Full text link
    Abstract Background Diet can markedly affect acid-base status and it significantly influences chronic kidney disease (CKD) and its progression. The relationship of dietary acid load (DAL) and CKD has not been assessed on a population level. We examined the association of estimated net acid excretion (NAEes) with CKD; and socio-demographic and clinical correlates of NAEes. Methods Among 12,293 U.S. adult participants aged >20 years in the National Health and Nutrition Examination Survey 1999–2004, we assessed dietary acid by estimating NAEes from nutrient intake and body surface area; kidney damage by albuminuria; and kidney dysfunction by eGFR < 60 ml/min/1.73m2 using the MDRD equation. We tested the association of NAEes with participant characteristics using median regression; while for albuminuria, eGFR, and stages of CKD we used logistic regression. Results Median regression results (ÎČ per quintile) indicated that adults aged 40–60 years (ÎČ [95% CI] = 3.1 [0.3–5.8]), poverty (ÎČ [95% CI] = 7.1 [4.01–10.22]), black race (ÎČ [95% CI] = 13.8 [10.8–16.8]), and male sex (ÎČ [95% CI] = 3.0 [0.7- 5.2]) were significantly associated with an increasing level of NAEes. Higher levels of NAEes compared with lower levels were associated with greater odds of albuminuria (OR [95% CI] = 1.57 [1.20–2.05]). We observed a trend toward greater NAEes being associated with higher risk of low eGFR, which persisted after adjustment for confounders. Conclusion Higher NAEes is associated with albuminuria and low eGFR, and socio-demographic risk factors for CKD are associated with higher levels of NAEes. DAL may be an important target for future interventions in populations at high risk for CKD.http://deepblue.lib.umich.edu/bitstream/2027.42/109474/1/12882_2014_Article_829.pd

    The molecular record of metabolic activity in the subsurface of the RĂ­o Tinto Mars analog

    Full text link
    In the subsurface, the interplay between microbial communities and the surrounding mineral substrate, potentially used as an energy source, results in different mineralized structures. The molecular composition of such structures can record and preserve information about the metabolic pathways that have produced them. To characterize the molecular composition of the subsurface biosphere, we have analyzed some core samples by time-of-flight secondary ion mass spectrometry (ToF-SIMS) that were collected in the borehole BH8 during the operations of the Mars Analog and Technology Experiment (MARTE) project. The molecular analysis at a micron-scale mapped the occurrence of several inorganic complexes bearing PO3-, SOx(2to4)-, NOx(2,3)-, FeOx(1,2)- SiO2-, and Cl-. Their distribution correlates with organic molecules that were tentatively assigned to saturated and monounsaturated fatty acids, polyunsaturated fatty acids, saccharides, phospholipids, sphingolipids, and potential peptide fragments. SOx- appear to be mineralizing some microstructures larger than 25 microns, which have branched morphologies, and that source SO3-bearing adducts. PO3-rich compounds occur in two different groups of microstructures which size, morphology, and composition are different. While a group of >40-micron sized circular micronodules lacks organic compounds, an ovoidal microstructure is associated with m/z of other lipids. The NO2-/NO3- and Cl- ions occur as small microstructure clusters (<20 microns), but their distribution is dissimilar to the mineralized microstructures bearing PO3-, and SO3-. However, they have a higher density in areas with more significant enrichment in iron oxides that are traced by different Fe-bearing anions like FeO2-. The distribution of the organic and inorganic negative ions, which we suggest, resulted from the preservation of at least three microbial consortia (PO4-, and NO2-/NO3-mineralizers PO4-lipid bearing microstructures), would have resulted from different metabolic and preservation pathway

    Hydrothermal venting in magma deserts : the ultraslow-spreading Gakkel and Southwest Indian Ridges

    Get PDF
    Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 5 (2004): Q08002, doi:10.1029/2004GC000712.Detailed hydrothermal surveys over ridges with spreading rates of 50–150 mm/yr have found a linear relation between spreading rate and the spatial frequency of hydrothermal venting, but the validity of this relation at slow and ultraslow ridges is unproved. Here we compare hydrothermal plume surveys along three sections of the Gakkel Ridge (Arctic Ocean) and the Southwest Indian Ridge (SWIR) to determine if hydrothermal activity is similarly distributed among these ultraslow ridge sections and if these distributions follow the hypothesized linear trend derived from surveys along fast ridges. Along the Gakkel Ridge, most apparent vent sites occur on volcanic highs, and the extraordinarily weak vertical density gradient of the deep Arctic permits plumes to rise above the axial bathymetry. Individual plumes can thus be extensively dispersed along axis, to distances >200 km, and ∌75% of the total axial length surveyed is overlain by plumes. Detailed mapping of these plumes points to only 9–10 active sites in 850 km, however, yielding a site frequency F s , sites/100 km of ridge length, of 1.1–1.2. Plumes detected along the SWIR are considerably less extensive for two reasons: an apparent paucity of active vent fields on volcanic highs and a normal deep-ocean density gradient that prevents extended plume rise. Along a western SWIR section (10°–23°E) we identify 3–8 sites, so F s = 0.3–0.8; along a previously surveyed 440 km section of the eastern SWIR (58°–66°E), 6 sites yield F s = 1.3. Plotting spreading rate (us) versus F s, the ultraslow ridges and eight other ridge sections, spanning the global range of spreading rate, establish a robust linear trend (F s = 0.98 + 0.015us), implying that the long-term heat supply is the first-order control on the global distribution of hydrothermal activity. Normalizing F s to the delivery rate of basaltic magma suggests that ultraslow ridges are several times more efficient than faster-spreading ridges in supporting active vent fields. This increased efficiency could derive from some combination of three-dimensional magma focusing at volcanic centers, deep mining of heat from gabbroic intrusions and direct cooling of the upper mantle, and nonmagmatic heat supplied by exothermic serpentinization.This research was partially supported the NOAA VENTS Program. P.J.M. and H.J.B.D. gratefully acknowledge NSF grant OPP 9911795 for support of the AMORE Expedition; P.J.M. and E.T.B. acknowledge NSF grant OPP 0107767 and the VENTS Program for development and construction of MAPRs for use in ice-covered seas. H.J.B.D. acknowledges NSF grant OCE-9907630 for support of SWIR studies. J.E.S. was supported by Deutsche Forschungsgemeinschaft grant SN15/2

    Markers of mineral metabolism and vascular access complications: The Choices for Healthy Outcomes in Caring for ESRD (CHOICE) study

    Full text link
    Introduction: Vascular access dysfunction is a major cause of morbidity in patients with end‐stage renal disease (ESRD) on chronic hemodialysis. The effects of abnormalities in mineral metabolism on vascular access are unclear. In this study, we evaluated the association of mineral metabolites, including 25‐hydroxy vitamin D (25(OH)D) and fibroblast growth factor‐23 (FGF‐23), with vascular access complications.Methods: We included participants from the Choices for Healthy Outcomes in Caring for ESRD (CHOICE) Study who were using an arteriovenous fistula (AVF; n = 103) or arteriovenous graft (AVG; n = 116). Serum levels of 25(OH)D, FGF‐23, parathyroid hormone (PTH), calcium, phosphorus, C‐reactive protein (CRP) and interleukin‐6 (IL‐6) were assessed from stored samples. Participants were followed for up to 1 year or until a vascular access intervention or replacement.Findings: A total of 24 participants using an AVF and 43 participants using an AVG experienced access intervention. Those with 25(OH)D level in the lowest tertile (3750 RU/mL) was associated with greater risk of AVF intervention (aHR = 2.56; 95% CI: 1.06, 6.18). Higher PTH was associated with higher risk of AVF intervention (aHR = 1.64 per SD of log(PTH); 95% CI: 1.02, 2.62). These associations were not observed in participants using an AVG. None of the other analytes were significantly associated with AVF or AVG intervention.Discussion: Low levels of 25(OH)D and high levels of FGF‐23 and PTH are associated with increased risk of AVF intervention. Abnormalities in mineral metabolism are risk factors for vascular access dysfunction and potential therapeutic targets to improve outcomes.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/153726/1/hdi12798_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/153726/2/hdi12798.pd

    Characterization of the acidic cold seep emplaced jarositic Golden Deposit, NWT, Canada, as an analogue for jarosite deposition on Mars

    Get PDF
    Surficial deposits of the OH-bearing iron sulfate mineral jarosite have been observed in several places on Mars, such as Meridiani Planum and Mawrth Vallis. The specific depositional conditions and mechanisms are not known, but by comparing martian sites to analogous locations on Earth, the conditions of formation and, thus, the martian depositional paleoenvironments may be postulated. Located in a cold semi-arid desert ~100 km east of Norman Wells, Northwest Territories, Canada, the Golden Deposit (GD) is visible from the air as a brilliant golden-yellow patch of unvegetated soil, approximately 140 m x 50 m. The GD is underlain by permafrost and consists of yellow sediment, which is precipitating from seeps of acidic, iron-bearing groundwater. On the surface, the GD appears as a patchwork of raised polygons, with acidic waters flowing from seeps in troughs between polygonal islands. Although UV-Vis-NIR spectral analysis detects only jarosite, mineralogy, as determined by X-Ray Diffraction and Inductively Coupled Plasma Emission Spectrometry, is predominantly natrojarosite and jarosite, with hydronium jarosite, goethite, quartz, clays, and small amounts of hematite. Water pH varies significantly over short distances depending on proximity to acid seeps, from 2.3 directly above seeps, to 5.7 several m downstream from seeps within the deposit, and up to 6.5 in ponds proximal to the deposit. Visual observations of microbial filament communities and phospholipid fatty acid analyses confirm that the GD is capable of supporting life for at least part of the year. Jarositic-bearing sediments extend beneath vegetation up to 70 m out from the deposit and are mixed with plant debris and minerals presumably weathered from bedrock and glacial till. This site is of particular interest because mineralogy (natrojarosite, jarosite, hematite, and goethite) and environmental conditions (permafrost and arid conditions) at the time of deposition are conceivably analogous to jarosite deposits on Mars. Most terrestrial analogues for Mars jarosites have been identified in temperate environments, where evaporation rates are very high and jarosites form along with other sulfates due to rapid evaporation (e.g. Rio Tinto, Spain; Western Australian acidic saline lake deposits). The GD is a rare example of an analogue site where jarosite precipitates under dominant freezing processes similar to those which could have prevailed on early Mars. Thus, the GD offers a new perspective on jarosite deposition by the upwelling of acidic waters through permafrost at Meridiani Planum and Mawrth Vallis, Mars. The GD also demonstrates that martian deposits may show considerably more chemical and mineral variability than indicated by the current remote sensing data sets

    An Experimental Study of Cryptocurrency Market Dynamics

    Full text link
    As cryptocurrencies gain popularity and credibility, marketplaces for cryptocurrencies are growing in importance. Understanding the dynamics of these markets can help to assess how viable the cryptocurrnency ecosystem is and how design choices affect market behavior. One existential threat to cryptocurrencies is dramatic fluctuations in traders' willingness to buy or sell. Using a novel experimental methodology, we conducted an online experiment to study how susceptible traders in these markets are to peer influence from trading behavior. We created bots that executed over one hundred thousand trades costing less than a penny each in 217 cryptocurrencies over the course of six months. We find that individual "buy" actions led to short-term increases in subsequent buy-side activity hundreds of times the size of our interventions. From a design perspective, we note that the design choices of the exchange we study may have promoted this and other peer influence effects, which highlights the potential social and economic impact of HCI in the design of digital institutions.Comment: CHI 201
    • 

    corecore