127 research outputs found

    Rockin\u27 in de Win\u27

    Get PDF
    https://digitalcommons.library.umaine.edu/mmb-vp/6125/thumbnail.jp

    Wonderin\u27

    Get PDF
    https://digitalcommons.library.umaine.edu/mmb-vp/5017/thumbnail.jp

    Joie d\u27amour : Valse-Caprice

    Get PDF
    https://digitalcommons.library.umaine.edu/mmb-ps/1257/thumbnail.jp

    Valse Petite

    Get PDF
    https://digitalcommons.library.umaine.edu/mmb-ps/1269/thumbnail.jp

    Actin Fusion Proteins Alter the Dynamics of Mechanically Induced Cytoskeleton Rearrangement

    Get PDF
    Mechanical forces can regulate various functions in living cells. The cytoskeleton is a crucial element for the transduction of forces in cell-internal signals and subsequent biological responses. Accordingly, many studies in cellular biomechanics have been focused on the role of the contractile acto-myosin system in such processes. A widely used method to observe the dynamic actin network in living cells is the transgenic expression of fluorescent proteins fused to actin. However, adverse effects of GFP-actin fusion proteins on cell spreading, migration and cell adhesion strength have been reported. These shortcomings were shown to be partly overcome by fusions of actin binding peptides to fluorescent proteins. Nevertheless, it is not understood whether direct labeling by actin fusion proteins or indirect labeling via these chimaeras alters biomechanical responses of cells and the cytoskeleton to forces. We investigated the dynamic reorganization of actin stress fibers in cells under cyclic mechanical loading by transiently expressing either egfp-Lifeact or eyfp-actin in rat embryonic fibroblasts and observing them by means of live cell microscopy. Our results demonstrate that mechanically-induced actin stress fiber reorganization exhibits very different kinetics in EYFP-actin cells and EGFP-Lifeact cells, the latter showing a remarkable agreement with the reorganization kinetics of non-transfected cells under the same experimental conditions

    Ex vivo intervertebral disc cultures: degeneration-induction methods and their implications for clinical translation

    Get PDF
    Because low back pain is frequently a result of intervertebral disc degeneration (IVDD), strategies to regenerate or repair the IVD are currently being investigated. Often, ex vivo disc cultures of non-human IVD organs or tissue explants are used that usually do not exhibit natural IVDD. Therefore, degenerative changes mimicking those reported in human IVDD need to be induced. To support researchers in selecting ex vivo disc cultures, a systematic search was performed for them and their potential use for studying human IVDD reviewed. Five degeneration induction categories (proinflammatory cytokines, injury/damage, degenerative loading, enzyme, and other) were identified in 129 studies across 7 species. Methods to induce degeneration are diverse and can induce mild to severe degenerative changes that progress over time, as described for human IVDD. The induced degenerative changes are model-specific and there is no "one-fits-all" IVDD induction method. Nevertheless, specific aspects of human IVDD can be well mimicked. Currently, spontaneously degenerated disc cultures from large animals capture human IVDD in most aspects. Combinatorial approaches of several induction methods using discs derived from large animals are promising to recapitulate pathological changes on several levels, such as cellular behaviour, extracellular matrix composition, and biomechanical function, and therefore better mimic human IVDD. Future disc culture setups might increase in complexity, and mimic human IVDD even better. As ex vivo disc cultures have the potential to reduce and even replace animal trials, especially during preclinical development, advancement of such models is highly relevant for more efficient and cost-effective clinical translation from bench-to-bedside

    Ex vivo intervertebral disc cultures: degeneration-induction methods and their implications for clinical translation

    Get PDF
    Because low back pain is frequently a result of intervertebral disc degeneration (IVDD), strategies to regenerate or repair the IVD are currently being investigated. Often, ex vivo disc cultures of non-human IVD organs or tissue explants are used that usually do not exhibit natural IVDD. Therefore, degenerative changes mimicking those reported in human IVDD need to be induced. To support researchers in selecting ex vivo disc cultures, a systematic search was performed for them and their potential use for studying human IVDD reviewed. Five degeneration induction categories (proinflammatory cytokines, injury/damage, degenerative loading, enzyme, and other) were identified in 129 studies across 7 species. Methods to induce degeneration are diverse and can induce mild to severe degenerative changes that progress over time, as described for human IVDD. The induced degenerative changes are model-specific and there is no “one-fits-all” IVDD induction method. Nevertheless, specific aspects of human IVDD can be well mimicked. Currently, spontaneously degenerated disc cultures from large animals capture human IVDD in most aspects. Combinatorial approaches of several induction methods using discs derived from large animals are promising to recapitulate pathological changes on several levels, such as cellular behaviour, extracellular matrix composition, and biomechanical function, and therefore better mimic human IVDD. Future disc culture setups might increase in complexity, and mimic human IVDD even better. As ex vivo disc cultures have the potential to reduce and even replace animal trials, especially during preclinical development, advancement of such models is highly relevant for more efficient and cost-effective clinical translation from bench-to-bedside

    Capacitative calcium influx and proliferation of human osteoblastic-like MG-63 cells

    Get PDF
    Adult bone tissue is continuously being remodelled and bone mass is maintained by a balance between osteoclastic bone resorption and osteoblastic bone formation. Alteration of osteoblastic cell proliferation may account in part for lack of balance between these two processes in bone loss of osteoporosis. There is calcium (Ca2+) control in numerous cellular functions; however, involvement of capacitative Ca2+ entry (CCE) in proliferation of bone cells is less well investigated. OBJECTIVES: The study described here was aimed to investigate roles of CCE in the proliferation of osteoblast-like MG-63 cells. MATERIALS AND METHODS: Pharmacological characterizations of CCE were undertaken in parallel, with evaluation of the expression of transient receptor potential canonical (TRPC) channels and of cell proliferation. RESULTS: Intracellular Ca2+ store depletion by thapsigargin induced CCE in MG-63 cells; this was characterized by a rapid transient increase of intracellular Ca2+ followed by significant CCE, induced by conditions that stimulated cell proliferation, namely serum and platelet-derived growth factor. Inhibitors of store-operated Ca2+ channels (2-APB and SKF-96365) prevented CCE, while voltage-dependent Ca2+ channel blockers had no effect. Expression of various TRPC channels was shown in the cells, some having been shown to be responsible for CCE. Voltage-dependent Ca2+ channel blockers had no effect on osteoblast proliferation while thapsigargin, 2-APB and SKF-96395, inhibited it. Cell cycle analysis showed that 2-APB and SKF-96395 lengthen the S and G2/M phases, which would account for the reduction in cell proliferation. CONCLUSIONS: Our results indicate that CCE, likely attributed to the activation of TRPCs, might be the main route for Ca2+ influx involved in osteoblast proliferation
    • …
    corecore