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Abstract

Because low back pain is frequently a result of intervertebral disc degeneration (IVDD), strategies to regenerate 
or repair the IVD are currently being investigated. Often, ex vivo disc cultures of non-human IVD organs or 
tissue explants are used that usually do not exhibit natural IVDD. Therefore, degenerative changes mimicking 
those reported in human IVDD need to be induced. To support researchers in selecting ex vivo disc cultures, 
a systematic search was performed for them and their potential use for studying human IVDD reviewed. 
Five degeneration induction categories (proinflammatory cytokines, injury/damage, degenerative loading, 
enzyme, and other) were identified in 129 studies across 7 species. Methods to induce degeneration are diverse 
and can induce mild to severe degenerative changes that progress over time, as described for human IVDD. 
The induced degenerative changes are model-specific and there is no “one-fits-all” IVDD induction method. 
Nevertheless, specific aspects of human IVDD can be well mimicked. Currently, spontaneously degenerated 
disc cultures from large animals capture human IVDD in most aspects. Combinatorial approaches of several 
induction methods using discs derived from large animals are promising to recapitulate pathological changes 
on several levels, such as cellular behaviour, extracellular matrix composition, and biomechanical function, 
and therefore better mimic human IVDD. Future disc culture setups might increase in complexity, and mimic 
human IVDD even better. As ex vivo disc cultures have the potential to reduce and even replace animal trials, 
especially during preclinical development, advancement of such models is highly relevant for more efficient 
and cost-effective clinical translation from bench-to-bedside.
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List of Abbreviations

2D   2-dimensional
3D   3-dimensional
3R   refine, reduce and replace
ADAMTS a disintegrin and metalloproteinase  
   with thrombospondin motifs
AF   annulus fibrosus 
AGE  advanced glycation end product
BMP  bone morphogenetic protein
CEP  cartilaginous endplate
chABC  chondroitinase ABC
Delamin. delamination
DMEM  Dulbecco’s modified Eagle’s medium
DOF  degrees of freedom
ECM  extracellular matrix
FBS  foetal bovine serum
G   gauge
HTRA1  HtrA serine peptidase 1
IFN  interferon
IL   interleukin
ITS  insulin-transferrin-selenium
IVD  intervertebral disc
IVDD  intervertebral disc degeneration
LBP  low back pain
LPS  lipopolysaccharide
macroph. macrophages
micrograv. microgravity
MMP  matrix metalloproteinase
n.p.  needle perforation
NC  notochordal cell
NEAA  non-essential amino acids
NO  nitric oxide
NP  nucleus pulposus
NPC  nucleopulpocyte
nr   not reported
pen/strep penicillin/streptomycin
PGE2  prostaglandin E2
sGAG  sulphated glycosaminoglycan
SPL  simulated physiological loading
TGF  transforming growth factor
TLR  toll-like receptor
TNF  tumour necrosis factor
TWEAK tumour necrosis factor-like weak  
   inducer of apoptosis
VEP  vertebral endplate

Introduction

LBP is a global health problem with a high 
socio-economic burden and growing prevalence 
(Hartvigsen et al., 2018; Manchikanti et al., 2014). It 
is frequently associated with IVDD (Ravindra et al., 
2018). IVDs are load-bearing joints located between 
the vertebral bodies of the spine. They consist of the 
central NP, the outer circumferential AF, and the 
cranial and caudal CEPs (Cramer, 2013).
 IVDD causing LBP is a disease, where several 
interconnected and cell-mediated processes, of both 

mechanical and biological origin, can trigger and 
amplify each other and finally induce degenerative 
changes that progress in severity over time (Vergroesen 
et al., 2015). Degenerative changes in the human IVD 
occur earlier in life than in comparable tissues such 
as the articular cartilage. First degenerative changes 
start already in the second decade of life and progress 
with age (Boos et al., 2002; Sakai et al., 2012; Urban and 
Roberts, 2003). The large vacuolated NC morphology 
is lost and smaller, non-vacuolated, chondrocyte-
like NPCs become the predominant resident cells in 
the NP. This cellular transition is accompanied by 
a catabolic shift, in which NPCs actively produce 
proinflammatory cytokines (Johnson et al., 2015; Le 
Maitre et al., 2005) that mediate inflammatory and 
catabolic protein expression (Bermudez-Lekerika 
et al., 2022; Vo et al., 2013) while reducing anabolic 
protein expression (Fusellier et al., 2020; Hunter et al., 
2003; Risbud and Shapiro, 2014). The resulting matrix 
breakdown is detectable early during degeneration 
by a proteoglycan reduction in the NP (Antoniou 
et al., 1996). Together with the concomitant sGAG 
reduction, the fixed charge density, and the osmotic 
pressure decrease. As the disc still encounters 
the same compressive loads, dehydration occurs, 
resulting in loss of disc height and biomechanical 
function (Neidlinger-Wilke et al., 2014; Salzer et 
al., 2022; Urban and Maroudas, 1979). With ECM 
breakdown, tissue stiffness changes as the fluid 
pressure decreases while the solid stress increases 
(Zhou et al., 2021a). Once degenerated, loading 
can additionally enhance IVDD, e.g. biomechanical 
forces are re-distributed from the NP towards the AF, 
overloading it (Adams et al., 1996; Adams et al., 2015). 
This can lead to lamellar disorganisation, i.e. physical 
damage such as radial fissures, tears, or rupture of the 
AF, as well as endplate damage, frequently leading 
to herniations via the AF or CEP (Adams et al., 2015; 
Grignon et al., 2000; Lama et al., 2021). Vertebral body 
sclerosis and osteophyte formation as well as blood 
vessel and nerve neo-formation and ingrowth into 
the inner AF and NP are frequently described at later 
stages of degeneration (Binch et al., 2015; Freemont 
et al., 1997; Klaassen et al., 2011; Luoma et al., 2000; 
Wade et al., 2020). Traumatic events can also lead to 
or accelerate degenerative changes (Alkhatib et al., 
2014), or vice versa, degenerated discs or parts thereof 
might be more prone to injury (Sitte et al., 2016).
 Treatments for LBP are scarce and sophisticated 
testing is necessary before they can be applied in the 
clinic. If LBP cannot be managed by conservative 
treatment and IVDD progresses (e.g. herniation 
or nerve impingement), surgery may become 
necessary but comes with considerable morbidity 
and questionable patient outcome (Eisenstein et al., 
2020). To avoid this, non-surgical therapies for IVDD 
are being developed, and need to be tested for their 
safety and effectiveness in preclinical settings. A 
logical route to study IVDD and potential treatments, 
even though laborious, is: 1) 2D in vitro cell cultures; 
2) 3D in vitro cell cultures; 3) tissue and organ tests 
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without ex vivo culture (e.g. biomechanical evaluation 
with thawed discs); 4) ex vivo (animal) tissue and 
organ derived disc cultures; 5) small and large animal 
studies in vivo (Thorpe et al., 2018). However, in many 
studies, the multiple possible steps between 2D cell 
culture and in vivo animal experiments are skipped 
(Kamali et al., 2021; Thorpe et al., 2018). Although in 
vivo animal studies are considered essential by the 
regulatory authorities for end-stage safety and proof-
of-principle studies (Lee et al., 2021), the 3R principles 
to refine, reduce and replace in vivo studies can be 
achieved by using ex vivo disc cultures for preclinical 
development.
 In this review ex vivo disc cultures are discussed, 
i.e. IVD tissue and organ derived ex vivo cultures 
(Gantenbein et al., 2015; Pfannkuche et al., 2020). 
Ex vivo cultures are advantageous over in vitro 
cultures as the IVD cells are already in their natural 
environment with its structural integrity (McDonnell 
and Buckley, 2021; Thorpe et al., 2018; Urban, 2002). 
While human disc cultures most closely mimic the 
situation found in patients, availability of such discs 
is limited. The many advantages of ex vivo cultures, 
such as a controlled laboratory environment, ethical 
acceptance, moderate throughput, flexibility, and 
comparatively low cost, compensate for their 
limitations like limited culture duration and the lack 
of a systemic response compared to animal models 
(Cramer et al., 2021; Pfannkuche et al., 2020; Tang et 
al., 2022). The history of IVD cultures was recently 
extensively discussed by Pfannkuche et al. (2020). 
Previously, stable culture systems that support the 
culture of healthy control discs were developed, 
which is a prerequisite for disc cultures. For example, 
IVD cultures retaining VEPs from large animals 
failed after 1-2 d in culture and removing the CEP 
led to immense swelling. The limited cell survival in 
organ cultures was solved by rinsing the endplates, 
as blood clots and debris prevented nutrient supply 
by reducing glucose diffusion (Grant et al., 2016), or 
by culturing with CEPs only (Chan and Gantenbein-
Ritter, 2012; Jim et al., 2011). Likewise, early explant 
cultures were proven difficult as swelling of the 
NP needs to be accounted for by a counterforce 
(Urban and Maroudas, 1981). Nowadays, ex vivo 
setup complexity can be high when in vivo loading 
situations are mimicked with dynamic bioreactor 
systems, i.e. SPL. SPL consists of one or several 
mechanical loading modes, such as compression, 
strain, or torsion (Chan et al., 2011; Gantenbein et 
al., 2015; Pfannkuche et al., 2020), which has been 
described to support cell viability and overall cell 
concentration compared to no loading (Paul et al., 
2012). Degenerative loading occurs when SPL is 
exceeded (described below).
 IVDD can be detected and categorised in 
severity. As IVDD is multifactorial and can affect 
all three regions of the IVD as well as the adjacent 
vertebrae, there is a large collection of destructive 
and non-destructive methods to evaluate IVDD 
in ex vivo disc cultures. All methods evaluate the 

composition and function of the ECM and/or the 
cells and their behaviour. IVDD can be scored 
by gross morphology, e.g. Thompson grading 
(Thompson et al., 1990), histologically (Le Maitre 
et al., 2021), or radiographically e.g. from X-rays 
(Kettler et al., 2006; Wilke et al., 2006) or MRI 
Pfirrmann (Pfirrmann et al., 2001). Discs can also be 
evaluated biomechanically, e.g. by non-destructive 
testing (Lee et al., 2021; Newell et al., 2017). The 
biochemical composition is often studied, e.g. 
assaying sGAG content (Farnadale et al., 1982). On 
a biomolecular level, gene, and protein expression, 
and immunohistology are often performed. All of 
the above-mentioned measurements are oftentimes 
accompanied by experiment-specific analysis 
methods. Various evaluation and grading methods 
are usually combined. The clinical evaluation is even 
more complex, as the analysis methods are limited to 
non-invasive techniques and degenerated discs can 
be asymptomatic, i.e. pain free.
 Disc cells reside in a harsh microenvironment. 
With respect to modelling IVDD during preclinical 
studies in disc cultures, disturbed molecular 
transport to and from the disc has been hypothesised 
as a potential mechanism initiating IVDD and can 
also hinder regeneration (Urban et al., 2004; Urban 
and Roberts, 2003). The lumbar IVD is the largest 
avascular structure of the adult human body; in the 
healthy disc, nerves, lymphatics, and blood vessels 
do not reach into the disc (Kirnaz et al., 2021; Yuan 
et al., 2009). Vital nutrients and toxic metabolites 
are transported almost exclusively via diffusion 
to and from the NP cells, mainly through the CEP 
(Holm et al., 1981; Urban et al., 2004; Zhu et al., 
2016). Calcifications of the CEP during IVDD and 
ageing reduce the transport surface of the CEP, 
which can decrease the nutrient flux (Benneker et 
al., 2005; Nachemson et al., 1970). As a result, cells 
in the NP and inner AF experience conditions that 
impede cellular survival and metabolism, as glucose 
concentrations and pH are low in the disc centre 
(Urban et al., 2004).
 Researchers are additionally confronted with 
many different animals that can act as sources of 
IVDs. There are many differences between the 
discs of animals that can influence their selection to 
study IVDD, such as whether they contain an NP 
(Bruggeman et al., 2012), availability, predominant 
cell type in the NP (Alini et al., 2008; Cappello et al., 
2006), geometry and diffusional distances (Fusellier 
et al., 2020), age, cellular activity (Cappello et al., 2006; 
Pereira et al., 2014; Seguin et al., 2004), and many 
others. Especially, NC containing discs may not be 
representative of the mature human disc containing 
smaller chondrocyte-like NPCs (Bach et al., 2022). 
However, NC-containing models may be suitable to 
study the onset of NC phenotype switch to NPCs or 
comparisons to non-NC containing discs. While AF 
repair and regeneration can also be studied in NC-
containing disc models, the presence of NCs and their 
secretome might influence AF regeneration.
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 Finally, as skeletally mature animals normally 
have healthy discs, degeneration must be induced. 
Nevertheless, with growing interest in disc cultures, 
it becomes increasingly difficult to understand 
the various induction methods that have become 
available. While inducing IVDD is frequently seen as 
“a means to an end”, careful characterisation of the 
treatment effects and appropriate control groups are 
necessary to better understand the models and their 
limitations. Therefore, the aim of this review is to 
summarise existing methods to induce degenerative 
changes in non-human ex vivo disc cultures and 
compare them to human IVDD.
 In this review we provide an overview of current 
degeneration-induction methods, so that researchers 
can choose the most suitable model for the specific 
research question in mind in future disc studies.

Materials and Methods

A systematic literature search without date restriction 
was performed on 01/01/2022 within PubMed and 
Web of Science with the following search terms: 
“intervertebral disc* OR nucleus pulposus OR 
anulus fibrosus OR annulus fibrosus OR cartilage* 
endplate AND ex vivo OR in vitro OR ex situ OR 
organ OR tissue OR explant AND degenerate* OR 
degrad*”. Full text screens were performed based 
on the following inclusion criteria: English literature 
from a peer-reviewed journal with full text available, 
non-human IVD organ or explant without a freezing 

step, culture in medium for at least 24 h at 37 °C, and 
only if degenerative changes were studied using 
any method. Human disc cultures were excluded 
as availability of non-degenerated discs is limited 
which makes the induction of IVDD redundant. 
Quality standards were not pre-defined, i.e. minimal 
criteria of reported information to be included, as 
such standards are difficult to define in an objective 
manner. Of 4074 potential articles, 129 studies were 
included. Full articles were screened for culture 
conditions, degeneration-induction method, and 
resulting degenerative changes and summarised in 
this review.

Results and Discussion

First studies were reported in 2000 and since 2013, 
approximately 10 studies were reported annually 
(Fig. 1a). The median experiment duration was 
10 d (range 1-56), the 25 % percentile 7 d, and the 
75 % percentile 14 d (Fig. 1b). Discs were used in 
descending frequency from cows, mice, rabbits, 
rats, pigs, goat, and sheep (Fig. 1c). While early disc 
cultures often made use of discs derived from mice 
and rabbits, discs derived from other animals have 
only been used for the last 10 to 15 years. In recent 
years, cow tail discs are used most frequently. Most 
of the discs were from caudal (50 %) or lumbar (29 %) 
regions (Fig. 1d). Approximately 10 % of the studies 
were conducted with explants, one study with a 
mouse spine, and the IVD organ cultures either with 

Table 1. Parameters to consider reporting when publishing an IVD organ or explant culture where 
degenerative changes were induced (where applicable and known). This table was derived from the authors’ 
experiences and after interpretation of frequently missing information of the included articles.

Topic Parameters to report

Organ or explant Animal, life stage of animal, species, strain, age, weight, sex, disc level(s), NP 
cell type, disc geometries (e.g. height), harvest method, precise description of the 
explant/organ (e.g. nucleus pulposus explant, IVD with cartilage endplates (i.e. 
the vertebrae were removed up to the cartilage endplates), IVD with vertebral 
endplates (i.e. part of the vertebra on top of the cartilage endplates).

Degeneration method Method used, tools with exact description (e.g. needle gauge, blade size 
etc.), location of treatment, number of interventions, e.g. stabs, etc., duration/
frequency of treatment, enzyme/cytokine used, dosage (e.g. activity in units), 
injection volume, media changes.

Culture conditions Basal medium used (including catalogue number of medium and supplier), 
glucose concentration, adjustments (e.g. pH, osmolarity and concentrations), 
supplements (e.g. growth factors, foetal bovine serum, ascorbic acid, 
antimicrobial ingredients etc. and concentrations), incubator settings (oxygen, 
temperature, CO2), media changes and media volume, culture chamber, 
mechanical loading parameters.

Control groups Day 0 control (fresh disc, not cultured) – native healthy disc.
Control (cultured without any induction) – stable disc culture.
Degenerated (disc treated with degeneration induction) – effect of degeneration.
Sham (degenerated disc with sham treatment) – effect of treatment method to 
repair or regenerate the disc.
Optionally: degenerated and sham can be done together.
Treatment groups according to study design.
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remaining vertebral body (17 %), VEP (58 %), or CEP 
(14 %). Based on the results obtained, a set of basic 
information that can be considered for reporting ex 
vivo studies in the IVD field is proposed (Table 1).

Culture conditions
Generally, concentrations of, e.g. FBS, oxygen, or 
glucose, are expected to be lower in the core of 
the disc than in the surrounding medium. Most 
studies applied 5 % CO2 (Fig. 2a). In 90 % of the 
studies, O2 concentration was either nr or reported 
to be atmospheric, i.e. 20 % (Fig. 2b). Only a limited 
number of studies employed physiologic culture 
conditions; the IVD is the largest avascular structure 
of the human body and oxygen concentration in vivo 
is reduced to < 5 % (Holm et al., 1981; Thorpe et al., 
2018; Urban et al., 2004). In line with this, cellular 
metabolism of NPCs is best maintained at hypoxic 
conditions, e.g. 5 % O2 (Feng et al., 2018; Holm et al., 
1981; Horner and Urban, 2001; Neidlinger-Wilke et 
al., 2012; Risbud et al., 2006). Loading was applied 
in 56 % of the studies and in over 30 % of all studies 
dynamic axial compression was applied (Fig. 2c). This 
is not surprising, as loading, especially axial loading, 
is necessary for IVD health and homeostasis in ex vivo 
disc cultures (Gantenbein et al., 2015; Pfannkuche et 
al., 2020).
 DMEM and DMEM/Nutrient Mixture F12 
combinations were used in 89 % of the studies (Fig. 
2d). The FBS concentration ranged from 0-20 %; 
5-10 % FBS was added to more than half of the media 
compositions (Fig. 2e). The glucose concentration 
was nr in 49 % of the studies, while in circa a third 
of the studies 4.5 g/L glucose was used (Fig. 2f). 
This supraphysiological glucose concentration is 
around five times as high as normal blood glucose 
concentrations (Röder et al., 2016). Penicillin and 
streptomycin were added in more than 70 % of 
the studies and antimycotics in circa 50 %. Sodium 
pyruvate and L-glutamine are typical components in 
the reported basal media compositions and 42 % of 
the studies added ascorbic acid (Fig. 2g). Cell survival 
is orchestrated by an interplay of [glucose], [oxygen], 
pH and their cellular consumption/production that 
can be further modulated by physical loading (Salzer 
et al., 2023). Nutrient demand increases with higher 
cell density and an increasing disc size is correlated to 
a lower cell density with smaller rodent discs having 
a higher cell density compared to sparsely populated 
bovine discs; even more so compared to larger human 
discs (Urban et al., 2004). Thus, cell density should be 
accounted for when adapting medium components.
 With regard to the study design, 30 % of the studies 
made use of a native control, i.e. a freshly harvested 
healthy control disc before culture, whereas most 
studies include a sham/untreated control and/or 
a degenerated control. Most studies investigated 
regenerative therapies (Fig. 2h). The proposed set of 
basic information for reporting future disc cultures 
can be found in Table 1.

Methods for inducing degeneration
The studies were divided into five different methods 
for inducing degenerative changes in healthy IVDs: 
proinflammatory cytokines (31 %), injury/damage 
(25 %), degenerative loading (17.5 %), enzyme 
(15.5 %), and other (11 %) (Fig. 3). Degenerative 
loading was the only category that was applied 
to all 7 species, whereas the largest category, 
proinflammatory cytokines, was mainly applied to 
discs from small animals (Fig. 4). Due to the large 
variability and the small dataset for certain methods 
or in certain categories, caused by, e.g. methodology, 
specific research question, animal species, experiment 
duration, or incomplete reports, quantitative 
meta-analysis leading to specific suggestions and 
recommendations remain difficult. Nevertheless, 
using this review will allow the reader to funnel 
down the overwhelming variability of methodologies 
to find the most suitable method for the research 
question in mind.

Proinflammatory cytokines
The most frequently used cytokines which expose 
cells to a pro-catabolic environment are IL-1β and 
TNF, which have been found to be elevated in 
human degenerated discs (Johnson et al., 2015; Le 
Maitre et al., 2005). Note that cytokines such as TNF 
or IL-1β are referred to as proinflammatory due to 
their important role in the immune system; however, 
they frequently fulfil a pro-catabolic function in the 
disc rather than an immunological one, as they are 
often increased in absence of infection, i.e. a so-called 
sterile inflammation (Bermudez-Lekerika et al., 2022; 
Krock et al., 2017). Nevertheless, to distinguish them 
from other catabolic factors, we refer to them as 
proinflammatory. Cytokines or other factors stimulate 
downstream cellular cytokine production when 
injected or added, as cells adapt rapidly by producing 
proinflammatory factors themselves (Pelle et al., 
2014; Zhao et al., 2020). Note that it remains unclear 
as to how long is the active period of cytokines and 
whether cytokine treatment induces a transient or a 
permanent switch of cellular phenotype. Therefore, 
they are often refreshed with every medium exchange 
(Du et al., 2020; Kamali et al., 2021). TNF has been 
shown to induce a cellular catabolic shift that is not 
recoverable (Purmessur et al., 2013) and after removal, 
TNF was still found in the medium as it was released 
by the affected cells (Walter et al., 2015). Nevertheless, 
when injected intradiscally, there appears to be a 
maximum effective concentration, as e.g. TNF did 
not show further degenerative changes in calf discs 
above an injection of 40 µL of 100 ng TNF/cm3 tissue 
(Du et al., 2020). Furthermore, dynamic loading 
should be accounted for as molecular transport of 
these cytokines is influenced by dynamic loading 
(Lang et al., 2018). Preliminary data from the authors’ 
labs (not published) furthermore indicate, that 
there may be differences in the effect of cytokines 
derived from different species and that species 
specific cytokines can potentially be more potent. 
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Therefore, species-specific cytokine variants should 
preferably be applied (personal communication Prof. 
Marianna Tryfonidou). Nevertheless, this makes the 
comparison of dosage between studies more complex.
 The cytokines IL-1β (10-100 ng/mL), TNF (1-
200 ng/mL), and TWEAK (10-300 ng/mL) were 
primarily studied in small NC-containing discs. 
In these discs, these cytokines induce a switch 
in cellular activity similar to that reported in 
humans, i.e. a catabolic shift with an upregulation 
of proinflammatory and catabolic markers with a 
concomitant decrease in anabolic and anti-catabolic 
markers. In small NC-containing discs, proteoglycan 
intensity was additionally frequently reduced 
(Ellman et al., 2012a; Fujita et al., 2012; Huang et al., 
2019; Liu et al., 2021; Ni et al., 2020; Ohba et al., 2008; 
Pelle et al., 2014; Takayama et al., 2018; Wako et al., 
2007; Wako et al., 2008; Wang et al., 2018; Yu et al., 2021; 
Zhao et al., 2020). In rabbit IVDs, IL-1β additionally 

triggered apoptosis at low doses and cell death at 
higher doses (Duan et al., 2007; Ellman et al., 2012b; 
Kim et al., 2013), whereas there were no changes in the 
ECM of cow AF explants but cells were metabolically 
more active (Neidlinger-Wilke et al., 2021). Similarly, 
lower doses of TNF had little effect on cow IVDs, 
but higher doses led to matrix breakdown and even 
loss of the AF/NP demarcation and AF bulging after 
21 d (Arkesteijn et al., 2015; Du et al., 2020; Lang et 
al., 2018; Purmessur et al., 2013; Walter et al., 2015; 
Walter et al., 2016). Additionally, TNF can increase 
IL-1β production and vice versa (Zhao et al., 2020).
 Interestingly, IL-1β and TNF combined (both 
100 ng/mL), added on day 0 and on day 7 to a 
cow NP explant culture, had no influence on gene 
expression on day 3 and day 7. However, on day 
14, proinflammatory and catabolic gene expression 
were increased, but anabolic markers and the ECM 
composition remained unchanged (Krupkova et al., 

Fig. 1. Overview of ex vivo IVD studies where disc degeneration was induced. (a) After the first studies 
were performed in the early 2000s, there were around 5-15 studies reported each year since 2013 indicating 
that disc cultures are well established. (b) The median experiment duration was 10 d; longer durations are 
frequently necessary to study IVD regeneration. (c) Cow discs were used in almost half of the studies and 
are the preferred model in recent years. (d) Caudal and lumbar disc levels were the most frequently used 
disc levels.
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2016). In small NC containing discs, the combination 
resulted in effects comparable to using the single 
cytokines (Huang et al., 2018; Ponnappan et al., 
2011). More studies using discs derived from larger 
animals are necessary to better understand the effect 

of cytokine treatment. Still, both cytokines create 
a pro-catabolic environment and lead to cellular 
adaptations typically found in human cells of 
degenerated discs and are therefore recommended 
for induction of a cellular catabolic shift.

Fig. 2. Culture conditions in IVD organ and explant cultures. (a) Most studies applied 5 % CO2 (b) and 
atmospheric O2 (i.e. 20 %). However, there is a trend towards 5 % O2, which better mimics the in vivo situation. 
(c) Most of the studies applied loading with almost no studies applying no load in recent publications; 
frequently dynamic axial compression was used. (d) The basal medium consisted in most studies of DMEM 
or a combination of DMEM with Nutrient Mixture F12 (F12), which was already established early in disc 
cultures. (e) A FBS concentration of 5-10 % was used in 50 % of the studies; however, it is highly dependent on 
the species used and several groups recently started to reduce the FBS concentration. (f) The most frequently 
mentioned glucose concentration was 4.5 g/L (i.e. 25 mmol/L), in half of the studies it was nr. Recently, 
there have been trends towards mimicking the in vivo situation of human discs, which have a lower glucose 
concentration (g) Almost 80 % of the studies reported the addition of pen/strep to the culture medium. The 
medium was frequently enriched with other components, such as ascorbic acid, ITS, or NEAA, especially 
when low concentrations of FBS were used. (h) A sham/untreated an/or a degenerated control was used in 
most studies and regenerative interventions were frequently studied.
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 Compared to IL-1β and TNF, stimulation by 
means of other cytokines are less frequently studied 
and the induction of a cellular catabolic shift is often 
less pronounced. Nevertheless, such models might 
be better suited to study the cellular development 
during IVDD. In mouse IVDs co-cultured with 

macrophages, which can release various cytokines, 
proteoglycan staining intensity was subsequently 
reduced for 2 d; however, the cellular response was 
not investigated (Haro et al., 2000). Other cytokines 
such as IL-6, IFN-γ, or TGF-β (all 10 ng/mL) but also 
the factors TGF-β3 or BMP-2 (both 1 µg/mL) did not 

Fig. 3. A tree map of methods to induce degenerative changes in disc cultures. The 5 categories were 
proinflammatory cytokines (red), injury/damage (blue), degenerative loading (violet), enzyme (green), and 
other (grey). 2 DOF: 2 degrees of freedom (shear and compression).
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induce a proinflammatory or catabolic response in 
mouse IVDs (Ohba et al., 2008; Wako et al., 2008). Of 
note, however, is that TGF-β3 and BMP-2 induced 
AF ossification (Haschtmann et al., 2012). LPS is an 
endotoxin derived from gram-negative bacteria that 
binds to TLR-4, a receptor which is also present on 
disc cells, which triggers cytokine production (Rajan 
et al., 2013; Teixeira et al., 2016a). LPS was only used 
in small NC containing discs (10 ng/mL-10 µg/mL), 
but a catabolic switch as described by IL-1β or TNF 
was not reported. Furthermore, the cell viability was 
not affected, while ECM degradation was frequently 
found, with up to 50 % sGAG reduction when high 
doses were used. Furthermore, collagen degradation 
and AF cleft formation was described (Kim et al., 2013; 
Li et al., 2015a; Li et al., 2015b; Li et al., 2016b; Li et al., 
2016a; Ohba et al., 2008; Wako et al., 2008; Xiao et al., 
2019). The mechanism of ECM degradation due to LPS 
treatment are not well understood yet but could be 
caused (partially) by TLR activation. TLRs activation 
by alarmins (ECM fragments) or specific TLR agonists 
in human IVDs led to matrix degradation, protease 
secretion, and proinflammatory cytokine production 
after 28 d of culture. Nevertheless, TLR sub-type 
activation is species-dependent, which should be 
taken into account when choosing receptor agonists 
for new disc cultures and for translation to human 
discs (Krock et al., 2017). Additionally, LPS might be 
suitable to mimic bacterial infection of the disc, e.g. 
to study Modic changes (Dudli et al., 2016).

Injury/damage
Various methods of physically disrupting the tissue 
have been used to induce IVDD, with the main 
advantage that they can be relatively quickly applied 
compared to other approaches. Frequently, scalpels 
or needles are used to extract or damage tissue with 
different degrees of severity. Additionally, impact 
loadings, i.e. a single event of high instantaneous 
force or displacement, have frequently been studied. 
Injury/damage models can damage any three regions 
of the disc in all possible combinations, making 
such induction methods especially interesting when 
specific structures need to stay unaffected.
 Al l  in jury/damage  models  induce  NP 
decompression; however, to various degrees of 
severity and by different mechanisms, depending 
on the chosen method. IVDs with NC-rich NP, e.g. 
pig discs, especially tend to easily extrude following 
injury. The induced NP decompression starts a 
degenerative cascade that progresses over time. 
Depending on the severity of the damage, the ECM 
composition and structure are affected, ranging from 
small reductions in proteoglycan content up to AF 
lamella disorganisation and cleft formation in the 
NP and AF. Typical effects of NP decompression 
are a reduction of cell viability in the NP and 
biomechanical changes such as decreased stiffness 
and height recovery, but increased creep and disc 
height loss (Dudli et al., 2012; Dudli et al., 2013; Dudli 
et al., 2015b; Dudli et al., 2015a; Frauchiger et al., 
2018; Guillaume et al., 2015; Haschtmann et al., 2008; 
Korecki et al., 2008a; Li et al., 2021; Likhitpanichkul 
et al., 2015; Peroglio et al., 2012; Pirvu et al., 2015; Sun 
et al., 2022; Teixeira et al., 2016a; Zhou et al., 2021b). 
Additionally, cells often react immediately with an 
increased NO release, apoptosis, oxidative stress 
marker release and the adaptation of their energy 
metabolism (Croft et al., 2021; Dudli et al., 2015a; 
Dudli et al., 2015b; Li et al., 2021; Sun et al., 2022).
 Annulotomy or annular fenestration damages the 
AF, but NP herniation has already been reported to 
occur as a result of the creation of 2 mm diameter 
holes in calf discs (Guillaume et al., 2015; Heuer 
et al., 2008; Likhitpanichkul et al., 2015; Peroglio et 
al., 2012; Pirvu et al., 2015), similar to human discs 
(Wilke et al., 2013; Zengerle et al., 2021). Annulotomy 
was compared to an endplate delamination, where a 
4 mm deep incision was made close to the endplate 
in cow discs. The delamination led to an increased 
expression of catabolic genes and a concomitant 
downregulation of anabolic genes (Alexeev et al., 
2020). This novel route to study herniations takes 
into account that most discs rupture at the endplate 
due to AF damage (Berger-Roscher et al., 2017; 
Rajasekaran et al., 2013; Wade et al., 2022; Wilke et al., 
2016). Similarly, the perforation of the CEP of a rabbit 
IVD (18 gauge (G) needle) led to NP herniation via 
the CEP; catabolic and proinflammatory signalling 
was increased in the NP (Dudli et al., 2013).
 The most frequently applied injury model is the 
needle puncture via the AF, with needle gauges 

Fig. 4. Distribution of degenerative stimuli across 
species. The most frequently applied method to 
induce degenerative changes, proinflammatory 
cytokines, was mainly applied to discs from small 
animals. Injury/damage was mainly applied to cow 
discs. Degenerative loading is the only common 
category among the 7 species. Enzymatic treatment 
was mainly tested using discs from large animals.
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ranging from 14 to 27 G, depending on the disc 
size and, as such, the species (Abraham et al., 2016; 
Hibino and Tang, 2017; Korecki et al., 2008a; Liu et 
al., 2017; Teixeira et al., 2016a; Vaudreuil et al., 2019). 
For example, needle puncture in mouse discs (27 G) 
led to a reduction of proteoglycans, cell viability, and 
stiffness, and an increase of proinflammatory markers 
(Abraham et al., 2016; Hibino and Tang, 2017; Liu et al., 
2017), but in rabbit discs (16 G) no differences in gene 
expression or proteoglycans were found (Vaudreuil 
et al., 2019). In cow IVDs (14-25 G), cell viability was 
only reduced next to the needle track (Korecki et al., 
2008a; Teixeira et al., 2016a).
 Impact loadings of up to 50 % displacement that 
lead to pressures of around 35 MPa in rabbit and cow 
discs are commonly used to fracture the VEP through 
which the NP can extrude (Dudli et al., 2012; Dudli 
et al., 2013; Dudli et al., 2015a; Dudli et al., 2015b; 
Haschtmann et al., 2008; Li et al., 2021; Sun et al., 2022; 
Zhou et al., 2021b). Notably, anabolic markers were 
decreased, whereas catabolic and proinflammatory 
markers were increased and, all in all, gene regulation 
in a cow disc after insult was affected in both, NPCs 
(167 upregulated, 85 downregulated) and in AF cells 
(119 upregulated, 89 downregulated) (Cui et al., 2021).
 The most obvious way for NP decompression is 
a (partial) nucleotomy via the CEP (Leite Pereira et 
al., 2018; Li et al., 2014; Li et al., 2016c; Li et al., 2016d; 
Li et al., 2017; Pereira et al., 2014; Pereira et al., 2016; 
Peroglio et al., 2013) or AF (Illien-Jünger et al., 2014; 
Li et al., 2016d; Long et al., 2018; McKee et al., 2020; 
Naqvi et al., 2019; Raines et al., 2020; Richards et al., 
2019; Stannard et al., 2015), after which the defect 
is frequently closed. In partial nucleotomies via 
the AF, the remaining NP often herniates during 
culture or even a cavity is formed in the NP, with 
the exception of nucleotomies via needles, where the 
decompression often leads to AF bulging indicating 
stress redistribution (Heuer et al., 2007; Illien-Jünger et 
al., 2014; Li et al., 2016d; Long et al., 2018; Naqvi et al., 
2019; Richards et al., 2019). Therefore, if herniations 
need to be avoided, the induced defect needs to be 
small.
 When damage models are combined with 
proinflammatory stimulation, cells frequently 
react by producing more proinflammatory and 
catabolic markers. For example, when needle 
puncture was combined with IL-1β treatment or 
LPS, proinflammatory and catabolic markers were 
increased, and anabolic signals were reduced in cow 
discs (Ferreira et al., 2021; Silva et al., 2019; Teixeira et 
al., 2016b; Teixeira et al., 2016a; Teixeira et al., 2018). 
Similarly, in a combined method with annulotomy 
and IFN-α2β treatment, anabolic markers were 
decreased, whereas apoptotic and proinflammatory 
markers were increased in a cow disc (Kazezian et 
al., 2016). Even though scarce, such combinatorial 
approaches are promising models for future disc 
studies to induce degenerative changes on multiple 
levels.

Degenerative loading
As summarised by Chan et al (Chan et al., 2011), 
magnitude, duration (per day and total), and 
frequency are crucial factors during dynamic 
compressive loading. Generally, axial compressive 
loading above 1 Hz, for more than 1 h, or above 
1 MPa may be considered as excessive mechanical 
loading that can induce degenerative changes, i.e. 
would constitute degenerative loading for ex vivo disc 
cultures. Nevertheless, in vivo, intradiscal pressures 
can reach magnitudes above 1 MPa in humans 
(Wilke et al., 1999) and sheep (Reitmaier et al., 2013), 
leading to high hydrostatic pressures (Neidlinger-
Wilke et al., 2006). Therefore, the complex interaction 
of amplitude, frequency, and duration needs to 
be adjusted for the specific culture setup and disc 
model. Especially disc geometry and correlated cell 
density among the different species is important 
to consider. For example, in young NC containing 
pig IVDs, intermediate loading values (≤ 0.4 MPa, 
≤ 1 Hz, ≤ 4 h) are anabolic, whereas high loading 
parameter values (0.8-1.3 MPa, or 3-5 Hz, or > 4 h) 
induce a catabolic shift (Kanda et al., 2021; Kurakawa 
et al., 2015; Xu et al., 2016). However, when skeletally 
mature NPC containing cow IVDs were loaded 
with up to 2.5 MPa (1 Hz, 1 h/day), no changes of 
IVDD were observed after 5 d (Korecki et al., 2008b). 
Controversially, Haglund et al. (2011) reported 
reduced cell viability and increased aggrecan 
fragmentation when cow discs were loaded for 
10 d at relatively lower loads (≥ 0.1-0.6 MPa, 0.1 Hz, 
4 h/d), indicating the model and loading parameter 
dependent effects of compressive loading. It has 
been noted by several investigators (e.g. personal 
communication Dr. Sybille Grad, Prof. James Iatridis 
and others), that when excessive loading regimes are 
used to induce degeneration, that this is typically 
accompanied by height reductions of more than circa 
15-20 %. Additionally, IVD height loss is frequently 
permanent and not restorable to the height at culture 
start. Therefore, relative displacement might be used 
as an indicator of degenerative compressive loading.
 When degenerative loading is applied, cell 
viability is frequently reduced due to increased 
apoptotic activity (Illien-Jünger et al., 2010; Paul 
et al., 2013; Paul et al., 2017; Xu et al., 2016; Zhang 
et al., 2018). Note that cell viability measurements 
only give a current snapshot of the proportion of 
viable cells, while cell density measurements allow 
quantitative temporal comparisons. Additionally, 
proteoglycan content in the NP is often reduced 
together with changes in the macroscopic appearance 
and tissue damages (Han et al., 2017; Kanda et al., 
2021; Kurakawa et al., 2015; LePage et al., 2021; 
McCann et al., 2013; Paul et al., 2013; Paul et al., 2017; 
Peroglio et al., 2017; Xu et al., 2016). When dynamic 
axial compression was combined with cyclic torsion, 
i.e. complex loading with 2-DOF, cell viability was 
even reduced to 0-10 % in the NP at stress levels of 
0.4-0.8 MPa and ± 2° torsion at 0.05-0.2 Hz for 4-8 h/d 
in cow discs (Chan et al., 2013a; Croft et al., 2021). 
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For future setups, a 6-DOF bioreactor will allow the 
application of complex loading to motional segments 
(Costi et al., 2008; Šećerović et al., 2022; Wilke et al., 
2016). However, static loading between 0.5-1 MPa also 
led to a reduction of cell viability and density due 
to apoptosis and matrix disorganisation in mouse, 
rabbit, or goat discs (Ariga et al., 2003; Paul et al., 2013; 
Paul et al., 2017; Zhan et al., 2016; Zhan et al., 2021). A 
static load can also be applied with a wedge, leading 
to apoptosis in the concave AF, whereas the convex 
AF had an increase of proinflammatory and catabolic 
markers (Walter et al., 2011). Under conditions that 
mimic space flight, i.e. microgravity by culturing 
a mouse disc in a rotating wall vessel bioreactor, 
DNA and proteoglycan content were reduced and 
apoptosis increased in mice discs after 56 d in culture 
(Jin et al., 2013). Two further studies cultured whole 
rat IVDs in microgravity; however, there were no 
degenerative changes observed but they concluded 
that a stable culture platform was obtained (Raines 
et al., 2020; Stannard et al., 2015).
 Loading has also been combined with other 
induction stimuli. The combination of high frequency 
loading (5-10 Hz) with glucose deprivation or needle 
puncture, led to an increase of proinflammatory 
markers in sheep or cow discs (Illien-Jünger et al., 
2010; Illien-Jünger et al., 2012; Lang et al., 2018; 
Navone et al., 2018; Pattappa et al., 2014; Wangler et 
al., 2019) and cell viability was reduced when glucose 
was deprived. However, the matrix composition 
often remained unchanged in these combinatorial 
models at early timepoints of < 11 d (Illien-Jünger 
et al., 2010; Lang et al., 2018; Navone et al., 2018). 
Nevertheless, the combination of glucose deprivation 
and degenerative loading had stronger effects than 
the respective conditions alone (Illien-Jünger et al., 
2010; Jünger et al., 2009). When TNF injection was 
combined with high frequency loading and glucose 
deprivation, the cellular phenotype adapted to a more 
degenerative type with increased proinflammatory 
and anabolic gene markers but reduced catabolic 
gene expression in cow discs (Lang et al., 2018; Li et 
al., 2020; Saravi et al., 2021). Also, tensile strain on cow 
AF explants (6-12 %, 1 Hz, 3 h/d) combined with IL 1β 
treatment led to PGE2 release and proinflammatory 
marker deposition within the translamellar bridging 
network (Saggese et al., 2019). In pig IVDs, trypsin 
injection together with degenerative loading led to a 
more severe degeneration type (Hsu et al., 2013; Kuo 
et al., 2014; Nikkhoo et al., 2018). Therefore, future 
studies investigating combinatorial approaches are 
very promising for mimicking human IVDD on 
several levels.
 To note, in many of the load induced IVDD 
cultures, the loading conditions were often changed 
back to physiological loading conditions after 
treatment initiation, e.g. cellular injections, as 
otherwise applied agents would also be subjected to 
degenerative loading conditions.

Enzyme
By injecting a proteolytic enzyme, the ECM is degraded, 
and with matrix breakdown, the biomechanical 
behaviour and cellular microenvironment change. 
Even though some enzymes are very specific, most 
ECM proteins are interconnected, and digestion of a 
specific element can, over time, loosen many ECM 
components. Enzymes can either be injected into 
the IVD or added to the culture medium. However, 
a slow injection of small volumes via small gauge 
needles (dependent on disc size) is suggested, to 
avoid large shear forces and physical injury that 
might induce degenerative changes itself, especially 
to the AF (Elliott et al., 2008; Lee et al., 2021; Mao 
et al., 2011). Nevertheless, NPCs morphology and 
viability usually remain unchanged following 
enzyme treatment, indicating that stronger cellular 
reactions may need to be provoked by means 
other than enzymes (Chan et al., 2013b). Enzymatic 
activity is dependent on the environment, e.g. pH 
and temperature, but also on enzyme-type, dose, 
time, and loading, thereby creating mild to severe 
progressive degeneration. Additionally, molecular 
transport out of the disc but also into other disc 
regions via diffusion and convection contribute to the 
enzymatic induction of disc degeneration. Dynamic 
loading can increase the convective transport of 
larger molecules (> 1 kDa) into/out off the disc, e.g. 
TNF (around 17 kDa, approximately the same size 
as IL-1β and IL-6) had an increased concentration 
in a dynamically-loaded IVD (Walter et al., 2015). 
Furthermore, it was recently shown that chABC-
induced sGAG reduction is affected by diurnal 
loading (Salzer et al., 2022).
 Two frequently used enzymes, papain and trypsin, 
have been reported to lead to NP cavity formation 
following injection in a dose-dependent manner in 
miniature-pig discs (Chen et al., 2009). Additionally, 
collagenase was reported to lead to cavity formation 
and NP destruction in goat discs, indicating that 
a breakdown of the collagenous network may be 
needed for cavity formation (Rustenburg et al., 2020). 
For papain, NP cavity formation was reported in all 
studies and often extended to the CEP and AF (Chan 
et al., 2013b; Gryadunova et al., 2021; Malonzo et al., 
2015; Roberts et al., 2008; Schmocker et al., 2016). 
However, it is hypothesised that damage to the CEP 
and AF can also arise from NP decompression that 
leads to overloading of other disc parts that initiates 
a progressive degenerative cascade, as described 
above. Additionally, trypsin, led to NP cavity 
formation starting at a dose of around 1,240 U in cow 
discs, similar to papain treatment; however, without 
extending to the AF after 3 weeks. An additional 
common observation was reduced sGAG content 
(AlGarni et al., 2016; Gawri et al., 2014; Hsu et al., 2013; 
Jim et al., 2011; Mwale et al., 2014; Nikkhoo et al., 2013; 
Nikkhoo et al., 2017; Roberts et al., 2008; Wangler et 
al., 2019). Interestingly, this was not the case when 
cow discs were loaded with SPL following trypsin 
injection (Gawri et al., 2014).
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 chABC has been injected into cow NP explants, 
pig IVDs and a goat IVD in doses of 0.02-0.4 U. The 
injection led to a dose- and time-dependent sGAG 
reduction and a less homogenous proteoglycan 
distribution. Therefore, chABC also leads to NP 
depressurisation and progressive IVDD like papain 
and trypsin, but with less severe damages on the 
ECM network (Krupkova et al., 2016; Li et al., 2018; 
Paul et al., 2018; Salzer et al., 2022). This method 
might therefore be more suitable to mimic the 
early loss of fixed charge density that reduces the 
osmotic pressure (Urban and Maroudas, 1979). The 
combination of chABC with collagenase type II led to 
more severe degeneration than each enzyme alone, 
with cell cluster formation, reduced anabolic activity, 
and increased catabolic and proinflammatory 
activity. Furthermore, AF fissures, demarcation 
between NP and AF, loss of pericellular matrix and 
changed biomechanics occurred (Rustenburg et al., 
2020). When chABC was combined with IL-1β in a 
rabbit NP or AF explant, an increase of collagenase 
and NO activity was found in the AF explant, but no 
changes in the inflammasome and MMP activity was 
found in NP explants (Sakuma et al., 2002).
 Other enzymes used are ADAMTS4, HTRA1, 
MMP-3, or thrombin. Thrombin (100 nmol/L) 
added to culture medium led to a catabolic and 
proinflammatory response and reduced proteoglycan 
staining intensity in mice AF, CEP, and NP (Takayama 
et al., 2018). MMP3, HTRA1, and ADAMTS4 (all 
10 µg/mL, (Furtwängler et al., 2013)) were studied 
in cow discs and might be considered rather mild 
compared to papain, trypsin, and chABC. While 
cells adapted their catabolic/anabolic activity, 
sGAGs remained unchanged and there were no 
macroscopic differences compared to healthy 
controls. Only in the ADAMTS-4-treated group was 
a trend of proteoglycan content reduction observed 
(Furtwängler et al., 2013). Thus, these enzymes might 
take an extended time to induce IVDD but resulting 
degenerative changes may better mimic the slower 
progressive human IVDD.
 Unfortunately, the combinatory effect of cytokines 
and enzymes remains scarcely investigated even 
though it is very powerful and useful. Long-term 
cultures could elucidate what the combined effects 
would be and whether that would be comparable 
to human disc degenerative processes. Most studies 
also did not report the use of an enzymatic inhibitor 
to control/stop enzymatic activity. Additionally, 
some enzymes can be inhibited by factors secreted 
by resident cells. However, the side effects, dose 
response, and the level of inhibition of various 
molecules are mainly unknown and need further 
investigation in future studies.

Other methods
Several groups have used disc cultures so study the 
side-effects of commonly used clinical methods, 
e.g. ionising X-ray radiation experienced during 
radiotherapy (Liu et al., 2020), but also to test 

clinical treatments such as disc analgesia or spinal 
fusion (Haschtmann et al., 2012; Iwasaki et al., 2014). 
Although they have not been used to induce disc 
degeneration per se, such treatments can induce 
IVDD and, therefore, their further investigation 
as induction methods for IVDD models may be 
fruitful. Similarly, co-morbidities such as diabetes 
or ageing, often studied to better understand the 
aetiology of IVDD, may also be useful as disease-
specific induction methods, e.g. AGE, when added 
to rat IVDs, led to collagen disruption and loss (Hoy 
et al., 2020). Another approach to consider would 
be to carry out the induction in vivo and then to 
investigate treatments in culture. This was done in 
two studies (Hamamoto et al., 2012; Ura et al., 2019); 
however, there does not seem to be much gained in 
terms of ethical considerations and 3R principles 
with this approach, thus other methods should be 
considered first.
 Finally, the most interesting induction method 
may be that of using spontaneously degenerated 
IVDs. In the pioneering work of Frapin et al. (2020), 
sheep discs degenerated by ageing (3-7 years old) 
were cultured ex vivo. Pfirrmann scoring (Pfirrmann 
et al., 2001) was grade 1 for 1 year old compared to 
grade 2-3 in 3-7 year-old sheep. This approach might 
be considered as the most realistic model of human 
IVDD, as ageing sheep were previously described to 
develop IVDD with features similar to those found 
in human IVDD, e.g. by changes observed through 
imaging and histology. (Alini et al., 2008; Bouhsina et 
al., 2021; Bouhsina et al., 2022; Lee et al., 2021; Nisolle 
et al., 2016). Similarly, mouse models have also been 
used to study disc ageing where more degenerative 
changes were found in aged mice compared to 
younger mice, indicating the importance of animal 
age (Fujita et al., 2012; Liu et al., 2020). Nevertheless, 
neither mouse nor sheep models of spontaneous 
IVDD are used frequently, potentially due to the 
manyfold limitations, e.g. the relatively high costs 
(e.g. due to trained personnel and animal housing), 
low availability, time, ethical considerations and the 
3Rs (e.g. compared to slaughterhouse material), and 
the necessity of grading – which requires special 
equipment and trained personnel. Furthermore, more 
in-depth research is necessary on spontaneously 
degenerated animal discs and their comparison 
to human IVDD to ensure that the mechanisms of 
disease are similar at the tissue-, cell- and molecular-
level. Additionally, not only differences in cell 
density due to ageing but also between species 
should be considered, as the intrinsic regeneration 
potential could be relatively higher in such discs. 
Finally, companion animals like dogs are frequently 
patients, which means that they can and should 
benefit from IVD research. There are two major 
types of breed groups with different common clinical 
entities, the acute NP thoracolumbar herniation (in 
chondrodystrophic dog breeds) or chronic building 
lumbosacral disc (in non-chondrodystrophic breeds). 
Both share similarities with human IVDD (Bergknut 
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et al., 2013; Kranenburg et al., 2013; Smolders et al., 
2013). Furthermore, experimental dogs and client-
owned dogs suffering from chronic LBP have been 
used to test regenerative therapies. As such, disc 
cultures from, e.g. beagle dogs, that are used as 
experimental animals for non-spine related studies, 
are currently underutilised; notwithstanding the use 
of donor material from diseased client-owned dogs 
of older age. But also, discs obtained from other 
species from spine-unrelated studies, e.g. aged mice 
or diabetic rats, are currently underutilised and might 
be good models, e.g. to study co-morbidities.

What can and cannot be mimicked with current ex 

vivo IVDD models?
In this review the emerging field of disc cultures 
to study IVDD were summarised with the aim of 
supporting researchers to choose the most suitable 
model for their research questions but also develop 
new models and further adapt existing methods. As 
induced degenerative changes typically progress 
within days to weeks, various severity degrees can 
be studied with most models. Furthermore, this 
allows for the study of a treatment at several degrees 
of severity using the same model. Nevertheless, the 
direct comparison of consistency in between studies 
is difficult due to large variations in methodology. 
However, the most important question when 
developing an IVDD model is, which overall strategy 
is best to induce degenerative changes: 1) mimicking 
the pathophysiological processes of human IVDD; 
or 2) mimicking one or several hallmark(s) of 
IVDD? While the first option might be more relevant 
for translation to human IVDD but with the drawback 
of high complexity, the second option is faster, 
relatively less complex, and perfectly suitable to 
answer a specific research question. Independent of 
the chosen degeneration method, the culture should 
– in best case – be representative of the situation 
found in human degenerated discs, e.g. by applying 
dynamic loading conditions and adaptations of the 
culture medium to reduced glucose, pH, osmolarity 
and O2 concentrations.
 For the first strategy, the models that mimic 
human IVDD best are spontaneously degenerated 
discs. These are derived from larger animals and 
caused by ageing, and human IVDD is a slowly 
progressive disease over the course of years to 
decades in humans. While this model is the most 
sophisticated, which hampers a broad application, 
more studies are necessary to understand the 
specific differences compared to human IVDD and 
spontaneously degenerated discs of various large 
animals, e.g. due to sex, or anatomical differences 
(Lee et al., 2021). The most promising strategy for a 
simplified version of strategy one is a combinatorial 
model of proinflammatory cytokine stimulus via 
TNF or IL-1β (or potentially even more complex 
formulations) together with enzymatic or mechanical 
degenerative stimuli. Alternatively, TLR activation, 
with the appropriate agonist for each species, might 

be further investigated as a trigger of IVDD (Krock 
et al., 2017). By applying such methods, researchers 
will be able to replicate many hallmarks of human 
IVDD, especially if the biochemical environment of 
the degenerated IVD is additionally imitated.
 However, many research questions do not 
necessarily require mimicking human IVDD in as 
many aspects as possible and the second strategy 
can be applied. Various factors are easy to apply 
and thereby add to already existing culture setups, 
such as a lower glucose concentration to reduce the 
cell density. Another suggested and easy addition 
is a cytokine stimulus such as TNF, as many of the 
current methods do not induce cellular changes 
found in human IVDD. Disc cultures are also 
suitable as preparation for preclinical in vivo trials, 
e.g. to determine required enzyme-dose and to find 
the most suitable readout parameters and assay 
methodologies. To investigate anti-inflammatory 
therapeutics, proinflammatory cytokine treatment 
such as TNF or IL-1β are good stimuli that can even 
induce a catabolic shift after several weeks of culture 
in cow discs (Purmessur et al., 2013; Walter et al., 2015). 
Methods that create a large void in the central NP, i.e. 
NP decompression due to enzymes or injury/damage, 
allow for injection of large amounts of a biomaterial, 
even with an intact AF and CEP to prevent the 
material from migrating out of the disc. Alternatively, 
AF or CEP defects can not only be used to mimic 
herniations and to test repair/regeneration strategies, 
but also for extrusion of injected biomaterials, e.g. 
for NP augmentation (Schmitz et al., 2020). In NP 
decompression models with dynamic loading, 
degenerative changes due to the redistribution of the 
applied force from the NP to the other disc regions 
will additionally occur. Another hallmark of IVDD 
that can be easily mimicked is sGAG reduction via 
chABC injection. This method allows for the study 
of the effect of a reduced fixed charge density and 
the resulting reduced osmotic pressure that leads to 
reduced biomechanical function. Using this method, 
therapies that can increase the swelling pressure can 
be studied, e.g. using swelling hydrogels or by cellular 
injections.
 Future disc cultures may be used to study 
discogenic pain, co-morbidities such as diabetes, 
or the role of the CEP on IVDD. Maybe even 
dynamically loaded whole spinal segments derived 
from large animals will be cultured in future setups 
once technical challenges are overcome. Other 
approaches to study IVDD that are not discussed in 
this review are tissue engineered IVDs (Gullbrand et 
al., 2018; Hamilton et al., 2006) and microfluidic-based 
systems (Mainardi et al., 2022).

Conclusion

Non-human IVD organ and tissue explant cultures 
can be used to mimic mild to severe human IVDD; 
degeneration can be induced with several methods 
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affecting all parts of the IVD and progressing over 
time. Disc culture models are especially suitable 
for studying novel techniques to augment the 
NP or regenerate the disc and its substructures 
with biomaterials, cells, or biologically active 
ingredients. Overall, most degeneration methods 
only mimic some aspects of human IVDD as that is 
often sufficient when answering a specific research 
question. Additionally, there is a clear trade-off 
between mimicking human IVDD as close as possible, 
to the applicability, availability, costs, and complexity 
of the model. The model that most completely mimics 
human IVDD in many aspects are disc cultures 
derived from spontaneously degenerated sheep 
IVDs, and dog-disc cultures are promising for this 
application. Unfortunately, such models are not 
expected to become broadly available. However, 
future applications using combinatorial degeneration 
induction methods can induce pathological changes 
on multiple levels affecting cellular behaviour, ECM 
composition, and biomechanical behaviour, and 
therefore more closely recapitulate aspects of human 
IVDD. With increasing complexity and specificity 
of disc culture systems, their potential to substitute 
animal trials is expected to steadily increase, making 
them a powerful tool for a better clinical translation 
from bench-to-bedside.
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Discussion with Reviewers

James Iatridis: Please discuss the very large difference 
in cellularity between for example bovine and human 
IVDs and how this will affect the glucose and oxygen 
concentrations needed to maintain physiological 
conditions in different model systems.
Authors: The cell density in the nucleus pulposus 
decreases with increasing disc size, so that rodents 
have a much higher cell density than, for example, 
bovine discs or human discs. A higher cell density 
increases the nutrient demand (Urban et al., 2004) 
to maintain them. However, regardless of the cell 
density, dynamic loading increases the metabolic 
activity of nucleus pulposus cells and can lead to a 
reduction of the cell density if the demand exceeds 
supply or transport capacity (Salzer et al., 2023). 
Furthermore, the nutrient supply is different in 
rodents compared to large animals (Alini et al., 2008). 
Therefore, physiological and pathophysiological 
conditions, for example adjusted via the glucose 
and pH in the medium, should be adjusted to the 
specific model and the research question in mind. In 
this respect, discs derived from larger animals better 
mimic the cell density of human discs; but even the 
most frequently used model of discs derived from 
young cow tails have a higher cellularity than human 
discs, which can influence the intrinsic regeneration 
potential. Finally, cellular phenotypes and changes 
thereof with degeneration need to be taken into 
consideration, as cells from animals are typically in 
a healthy state at the initiation of culture.

Lisbet Haglund: Please discuss how the oxygen 
consumption rate varies with glucose concentration 
and the degenerative state of the tissue. Please also 
discuss how this may relate to IVD size and the blood 
glucose level in different species.
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Authors: In the healthy and degenerated IVD, the 
NPCs reside in a hypoxic environment. Under 
such conditions, glucose is metabolised to lactate. 
However, it has been reported that even under 21 % 
O2 conditions (hyperoxia), the metabolism of NPCs 
is still anaerobic (Horner et al., 2021, additional 
reference). Moreover, it has been reported that such 
high oxygen tensions can lead to reactive oxygen 
formation (Feng et al., 2018, additional reference). 
Interestingly, under 21 % O2 conditions, the oxygen 
consumption rate of human degenerated NP, AF, 
and CEP cells was found to be highest at low glucose 
(1 mmol/L) compared to higher (5 and 25 mmol/L) 
glucose concentrations, and overall higher than 
in healthy cells. Glucose concentration did not 
influence the oxygen consumption of healthy NP, 
AF, and CEP cells. However, neither healthy nor 
degenerated NPCs did show a different oxygen 
consumption compared to CEP and AF cells 
(Cisewski et al., 2019, additional reference). NCs have 
a higher proteoglycan production rate than NPCs 
(Miyazaki et al., 2009, additional reference) and a 
higher oxygen consumption than AF cells (Guehring 
et al., 2009, additional reference), indicating a 
different energy metabolism, which has not been well 
characterised. This interplay between the transport of 
basic nutrients and the effect on NP cells metabolism 
both in the physiological and pathopysiological state 
would be of interest to study further in well defined 
ex vivo cultures.
 In general, blood glucose levels are relatively 
comparable between all the species mentioned, 
whereas the size of their disc and there cellularity 
are not (see response to Iatridis above). However 
in addition, there are other anatomical differences 
that are important to consider. Mice, rats, and e.g. 
sandrats don't have vascular buds in their vertebral 
endplates, and it is speculated that due to their small 
size, nutrient supply through the AF is sufficient 
(Gruber et al., 2005, additional reference; Alini et al., 
2008). Contrary, in larger animals, approximately 
starting at the size of rabbits, vascular buds terminate 
in the vertebral endplates and small molecules are 
transported almost exclusively by diffusion through 
the cartilage endplate.  With increasing disc size, the 
diffusion distance increases to the central region of 
the NP (Urban et al., 2004). Finally, with ageing and 
degeneration, calcifications can block vascular buds 
at the BEP/CEP interface (Benneker et al., 2005).
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