171 research outputs found

    Three-dimensional easy morphological (3-DEMO) classification of scoliosis, part I

    Get PDF
    BACKGROUND: While scoliosis has, for a long time, been defined as a three-dimensional (3D) deformity, morphological classifications are confined to the two dimensions of radiographic assessments. The actually existing 3-D classification proposals have been developed in research laboratories and appear difficult to be understood by clinicians. AIM OF THE STUDY: The aim of this study was to use the results of a 3D evaluation to obtain a simple and clinically oriented morphological classification (3-DEMO) that might make it possible to distinguish among different populations of scoliotic patients. METHOD: We used a large database of evaluations obtained through an optoelectronic system (AUSCAN) that gives a 3D reconstruction of the spine. The horizontal view was used, with a spinal reference system (Top View). An expert clinician evaluated the morphological reconstruction of 149 pathological spines in order to find parameters that could be used for classificatory ends. These were verified in a mathematical way and through computer simulations: some parameters had to be excluded. Pathological data were compared with those of 20 normal volunteers. RESULTS: We found three classificatory parameters, which are fully described and discussed in this paper: Direction, the angle between spinal pathological and normal AP axis; Shift, the co-ordinates of the barycentre of the Top View ; Phase, the parameter describing the spatial evolution of the curve. Using these parameters it was possible to distinguish normal and pathological spines, to classify our population and to differentiate scoliotic patients with identical AP classification but different 3D behaviors. CONCLUSION: The 3-DEMO classification offers a new and simple way of viewing the spine through an auxiliary plane using a spinal reference system. Further studies are currently under way to compare this new system with the existing 3-D classifications, to obtain it using everyday clinical and x-rays data, and to develop a triage for clinical use

    The three-dimensional easy morphological (3-DEMO) classification of scoliosis, part II: repeatability

    Get PDF
    BACKGROUND: In the first part of this study we proposed a new classification approach for spinal deformities (3-DEMO). To be valid, a classification needs to overcome the repeatability issue which is inherent both in the used classificatory system and in the measured object. AIM: The aim of this study is to present procedures and results obtained within the repeatability of 3-DEMO classification for scoliosis analysis. METHOD: We acquired the data of 100 pathological and 20 normal spines with an optoelectronic system (AUSCAN) and of two dummies with simulated spine deformity. On the obtained 3D reconstruction of the spine, we considered the coronal view with a spinal reference system (Top View) and its three related parameters, defined in part I, constituting the 3-DEMO classification. We calculated the repeatability coefficient for the subjects (two acquisitions for each subject with a time interval of 26 ± 12 sec), whereas we evaluated the system measurement error calculating the standard deviation of 50 consecutive acquisitions for each dummy. RESULTS: Comparing the results of the two types of acquisition, it emerged that the main part of parameters variability was due to postural adjustments The proportion of agreement for the 3-DEMO parameters gives a k value above 0.8; almost 10% of patients changed classification because of postural adjustments, but none had a "mirror-like" variation nor a change in more of one parameter at a time Repeatability coefficient is lower than the previously calculated normative limits. DISCUSSION: The 3-DEMO classification has a high repeatability when evaluated with an optoelectronic system such as the AUSCAN System, whose systematic error is very low. This means that the implied physiological phenomenon is consistent and overcomes the postural variability inherent in the measured object (normal or pathological subject)

    Postural effects of symmetrical and asymmetrical loads on the spines of schoolchildren

    Get PDF
    The school backpack constitutes a daily load for schoolchildren: we set out to analyse the postural effects of this load, considering trunk rotation, shoulder asymmetry, thoracic kyphosis, lumbar lordosis, and sagittal and frontal decompensation from the plumbline. A group of 43 subjects (mean age = 12.5 ± 0.5 years) were considered: average backpack loads and average time spent getting to/from home/school (7 min) had been determined in a previous study conducted on this population. Children were evaluated by means of an optoelectronic device in different conditions corresponding to their usual everyday school backpack activities: without load; bearing 12 (week maximum) and 8 (week average) kg symmetrical loads; bearing an 8 kg asymmetrical load; after fatigue due to backpack carrying (a 7-minute treadmill walking session bearing an 8 kg symmetrical load). Both types of load induce changes in posture: the symmetrical one in the sagittal plane, without statistical significant differences between 8 and 12 kg, and the asymmetrical one in all anatomical planes. Usual fatigue accentuates sagittal effects, but recovery of all parameters (except lumbar lordosis) follows removal of the load. The backpack load effect on schoolchildren posture should be more carefully evaluated in the future, even if we must bear in mind that laws protect workers to carry heavy loads but not children, and results in the literature support the hypothesis that back pain in youngsters is correlated with back pain in adulthoo

    The three-dimensional easy morphological (3-DEMO) classification of scoliosis – Part III, correlation with clinical classification and parameters

    Get PDF
    BACKGROUND: In the first part of this study we proposed a new classification approach for spinal deformities (3-DEMO classification). To be valid, a classification needs to describe adequately the phenomenon considered (construct validity): a way to verify this issue is comparison with already existing classifications (concurrent and criterion validity). AIM: To compare the 3-DEMO classification and the numerical results of its classificatory parameters with the existing clinical classifications and the Cobb degrees on the frontal and sagittal planes respectively. METHODS: 118 subjects (96 females) with adolescent idiopathic scoliosis (age 15.9 ± 3.1, 37.4 ± 12.5° Cobb) have been classified according to 3-DEMO, SRS-Ponseti, King and Lenke classifications as well as according to sagittal configuration. For all patients we computed the values of the 3-DEMO parameters and the classical Cobb degrees measurements in the frontal and sagittal planes. Statistical analysis comprised Chi Square and Regression analysis, including a multivariate stepwise regression. RESULTS: Three of the four 3-DEMO parameters (Direction, Sagittal and Frontal Shift) correlated with SRS-Ponseti, King and sagittal configuration classifications, but not with Lenke's one. Feeble correlations have been found among numerical parameters, while the stepwise regression allowed us to develop almost satisfactory models to obtain 3-DEMO parameters from classical Cobb degrees measurements. DISCUSSION: These results support the hypothesis of a possible clinical significance of the 3-DEMO classification, even if follow-up studies are needed to better understand these possible correlations and ultimately the classification usefulness. The most interesting 3D parameters appear to be Direction and mainly Phase, the latter being not at all correlated with currently existing classifications. Nevertheless, Shift cannot be easily appreciated on classical frontal and sagittal radiographs, even if it could presumably be calculated

    Indoor NO2 air pollution and lung function of professional cooks

    Get PDF
    Studies ofcooking- generated NO2 effects are rare in occupational epidemiology. in the present study, we evaluated the lung function of professional cooks exposed to NO2 in hospital kitchens. We performed spirometry in 37 cooks working in four hospital kitchens and estimated the predicted FVC, FEV1 and FEF25-75, based on age, sex, race, weight, and height, according to Knudson standards. NO2 measurements were obtained for 4 consecutive days during 4 different periods at 20-day intervals in each kitchen. Measurements were performed inside and outside the kitchens, simultaneously using Palm diffusion tubes. A time/exposure indicator was defined as representative of the cumulative exposure of each cook. No statistically significant effect of NO2 exposure on FVC was found. Each year of work as a cook corresponded to a decrease in predicted FEV1 of 2.5% (P=0.046) for the group as a whole. When smoking status and asthma were included in the analysis the effect of time/exposure decreased about 10% and lost statistical significance. On predicted FEF25-75, a decrease of 3.5% (P=0.035) was observed for the same group and the inclusion of controllers for smoking status and asthma did not affect the effects of time/exposure on pulmonary function parameter. After a 10-year period of work as cooks the participants of the study may present decreases in both predicted FEV1 and FEF25-75 that can reach 20 and 30%, respectively. the present study showed small but statistically significant adverse effects of gas stove exposure on the lung function of professional cooks.Univ São Paulo, Fac Med, Lab Poluicao Atmosfer Expt, BR-01246903 São Paulo, SP, BrazilUniversidade Federal de São Paulo, Escola Paulista Med, Dept Med, Disciplina Clin Med,Grp Fisiopatol Pulmonar & Pol, São Paulo, SP, BrazilABC, Fac Med, Dept Saude Coletividade, Santo Andre, SP, BrazilUniv Catolica Santos, Programa Posgrad Saude Coletiva, Santos, SP, BrazilCtr Univ Araraquara, Lab Fisioterapia Cardioresp, Araraquara, SP, BrazilUniv Estadual Paulista, Inst Quim, Araraquara, SP, BrazilHarvard Univ, Sch Publ Hlth, Dept Environm Hlth, Exposure Epidemiol & Risk Program, Boston, MA 02115 USAUniv Santo Amaro, Fac Med, Programa Pediat Ambiental, São Paulo, SP, BrazilUniversidade Federal de São Paulo, Escola Paulista Med, Dept Med, Disciplina Clin Med,Grp Fisiopatol Pulmonar & Pol, São Paulo, SP, BrazilWeb of Scienc

    In vitro and in vivo evaluations of glass-ionomer cement containing chlorhexidine for Atraumatic Restorative Treatment

    Get PDF
    Objectives: Addition of chlorhexidine has enhanced the antimicrobial effect of glass ionomer cement (GIC) indicated to Atraumatic Restorative Treatment (ART); however, the impact of this mixture on the properties of these materials and on the longevity of restorations must be investigated. The aim of this study was to evaluate the effects of incorporating chlorhexidine (CHX) in the in vitro biological and chemical-mechanical properties of GIC and in vivo clinical/ microbiological follow-up of the ART with GIC containing or not CHX. Material and Methods: For in vitro studies, groups were divided into GIC, GIC with 1.25% CHX, and GIC with 2.5% CHX. Antimicrobial activity of GIC was analyzed using agar diffusion and anti-biofilm assays. Cytotoxic effects, compressive tensile strength, microhardness and fluoride (F) release were also evaluated. A randomized controlled trial was conducted on 36 children that received ART either with GIC or GIC with CHX. Saliva and biofilm were collected for mutans streptococci (MS) counts and the survival rate of restorations was checked after 7 days, 3 months and one year after ART. ANOVA/Tukey or Kruskal-Wallis/ Mann-Whitney tests were performed for in vitro tests and in vivo microbiological analysis. The Kaplan-Meier method and Log rank tests were applied to estimate survival percentages of restorations (

    Technical Design Report for the PANDA Solenoid and Dipole Spectrometer Magnets

    Full text link
    This document is the Technical Design Report covering the two large spectrometer magnets of the PANDA detector set-up. It shows the conceptual design of the magnets and their anticipated performance. It precedes the tender and procurement of the magnets and, hence, is subject to possible modifications arising during this process.Comment: 10 pages, 14MB, accepted by FAIR STI in May 2009, editors: Inti Lehmann (chair), Andrea Bersani, Yuri Lobanov, Jost Luehning, Jerzy Smyrski, Technical Coordiantor: Lars Schmitt, Bernd Lewandowski (deputy), Spokespersons: Ulrich Wiedner, Paola Gianotti (deputy
    • …
    corecore