81 research outputs found

    Interaction-based quantum metrology showing scaling beyond the Heisenberg limit

    Full text link
    Quantum metrology studies the use of entanglement and other quantum resources to improve precision measurement. An interferometer using N independent particles to measure a parameter X can achieve at best the "standard quantum limit" (SQL) of sensitivity {\delta}X \propto N^{-1/2}. The same interferometer using N entangled particles can achieve in principle the "Heisenberg limit" {\delta}X \propto N^{-1}, using exotic states. Recent theoretical work argues that interactions among particles may be a valuable resource for quantum metrology, allowing scaling beyond the Heisenberg limit. Specifically, a k-particle interaction will produce sensitivity {\delta}X \propto N^{-k} with appropriate entangled states and {\delta}X \propto N^{-(k-1/2)} even without entanglement. Here we demonstrate this "super-Heisenberg" scaling in a nonlinear, non-destructive measurement of the magnetisation of an atomic ensemble. We use fast optical nonlinearities to generate a pairwise photon-photon interaction (k = 2) while preserving quantum-noise-limited performance, to produce {\delta}X \propto N^{-3/2}. We observe super-Heisenberg scaling over two orders of magnitude in N, limited at large N by higher-order nonlinear effects, in good agreement with theory. For a measurement of limited duration, super-Heisenberg scaling allows the nonlinear measurement to overtake in sensitivity a comparable linear measurement with the same number of photons. In other scenarios, however, higher-order nonlinearities prevent this crossover from occurring, reflecting the subtle relationship of scaling to sensitivity in nonlinear systems. This work shows that inter-particle interactions can improve sensitivity in a quantum-limited measurement, and introduces a fundamentally new resource for quantum metrology

    Clinical Impact of the Polypill for Cardiovascular Prevention in Latin America: A Consensus Statement of the Inter-American Society of Cardiology.

    Get PDF
    The burden of cardiovascular diseases (CVD) is increasing, particularly in low-middle-income countries such as most of Latin America. This region presents specific socioeconomic characteristics, generating a high incidence of CVD despite efforts to control the problem. A consensus statement has been developed by Inter-American Society of Cardiology with the aim of answering some important questions related to CVD in this region and the role of the polypill in cardiovascular (CV) prevention as an intervention to address these issues. A multidisciplinary team composed of Latin American experts in the prevention of CVD was convened by the Inter-American Society of Cardiology and participated in the process and the formulation of statements. To characterize the prevailing situation in Latin American countries, we describe the most significant CV risk factors in the region. The barriers that impair the use of CV essential medications are also reviewed. The role of therapeutic adherence in CV prevention and how the polypill emerges as an effective strategy for optimizing adherence, accessibility, and affordability in the treatment of CVDs are discussed in detail. Clinical scenarios in which the polypill could represent an effective intervention in primary and secondary CV prevention are described. This initiative is expected to help professionals involved in the management of CVD and public health policymakers develop optimal strategies for the management of CVDs

    Quantum computing implementations with neutral particles

    Full text link
    We review quantum information processing with cold neutral particles, that is, atoms or polar molecules. First, we analyze the best suited degrees of freedom of these particles for storing quantum information, and then we discuss both single- and two-qubit gate implementations. We focus our discussion mainly on collisional quantum gates, which are best suited for atom-chip-like devices, as well as on gate proposals conceived for optical lattices. Additionally, we analyze schemes both for cold atoms confined in optical cavities and hybrid approaches to entanglement generation, and we show how optimal control theory might be a powerful tool to enhance the speed up of the gate operations as well as to achieve high fidelities required for fault tolerant quantum computation.Comment: 19 pages, 12 figures; From the issue entitled "Special Issue on Neutral Particles

    Dark solitons in atomic Bose-Einstein condensates: from theory to experiments

    Full text link
    This review paper presents an overview of the theoretical and experimental progress on the study of matter-wave dark solitons in atomic Bose-Einstein condensates. Upon introducing the general framework, we discuss the statics and dynamics of single and multiple matter-wave dark solitons in the quasi one-dimensional setting, in higher-dimensional settings, as well as in the dimensionality crossover regime. Special attention is paid to the connection between theoretical results, obtained by various analytical approaches, and relevant experimental observations.Comment: 82 pages, 13 figures. To appear in J. Phys. A: Math. Theor

    Speeding up the spatial adiabatic passage of matter waves in optical microtraps by optimal control

    Full text link
    We numerically investigate the performance of atomic transport in optical microtraps via the so called spatial adiabatic passage technique. Our analysis is carried out by means of optimal control methods, which enable us to determine suitable transport control pulses. We investigate the ultimate limits of the optimal control in speeding up the transport process in a triple well configuration for both a single atomic wave packet and a Bose-Einstein condensate within a regime of experimental parameters achievable with current optical technology.Comment: 17 pages, 14 figure

    Campylobacter jejuni Demonstrates Conserved Proteomic and Transcriptomic Responses When Co-cultured With Human INT 407 and Caco-2 Epithelial Cells

    Get PDF
    Major foodborne bacterial pathogens, such as Campylobacter jejuni, have devised complex strategies to establish and foster intestinal infections. For more than two decades, researchers have used immortalized cell lines derived from human intestinal tissue to dissect C. jejuni-host cell interactions. Known from these studies is that C. jejuni virulence is multifactorial, requiring a coordinated response to produce virulence factors that facilitate host cell interactions. This study was initiated to identify C. jejuni proteins that contribute to adaptation to the host cell environment and cellular invasion. We demonstrated that C. jejuni responds to INT 407 and Caco-2 cells in a similar fashion at the cellular and molecular levels. Active protein synthesis was found to be required for C. jejuni to maximally invade these host cells. Proteomic and transcriptomic approaches were then used to define the protein and gene expression profiles of C. jejuni co-cultured with cells. By focusing on those genes showing increased expression by C. jejuni when co-cultured with epithelial cells, we discovered that C. jejuni quickly adapts to co-culture with epithelial cells by synthesizing gene products that enable it to acquire specific amino acids for growth, scavenge for inorganic molecules including iron, resist reactive oxygen/nitrogen species, and promote host cell interactions. Based on these findings, we selected a subset of the genes involved in chemotaxis and the regulation of flagellar assembly and generated C. jejuni deletion mutants for phenotypic analysis. Binding and internalization assays revealed significant differences in the interaction of C. jejuni chemotaxis and flagellar regulatory mutants. The identification of genes involved in C. jejuni adaptation to culture with host cells provides new insights into the infection process

    Rate-dependent Ca2+ signalling underlying the force-frequency response in rat ventricular myocytes: A coupled electromechanical modeling study

    Get PDF
    Rate-dependent effects on the Ca2+ sub-system in a rat ventricular myocyte are investigated. Here, we employ a deterministic mathematical model describing various Ca2+ signalling pathways under voltage clamp (VC) conditions, to better understand the important role of calmodulin (CaM) in modulating the key control variables Ca2+/calmodulin-dependent protein kinase-II (CaMKII), calcineurin (CaN), and cyclic adenosine monophosphate (cAMP) as they affect various intracellular targets. In particular, we study the frequency dependence of the peak force generated by the myofilaments, the force-frequency response (FFR). Our cell model incorporates frequency-dependent CaM-mediated spatially heterogenous interaction of CaMKII and CaN with their principal targets (dihydropyridine (DHPR) and ryanodine (RyR) receptors and the SERCA pump). It also accounts for the rate-dependent effects of phospholamban (PLB) on the SERCA pump; the rate-dependent role of cAMP in up-regulation of the L-type Ca2+ channel (ICa;L); and the enhancement in SERCA pump activity via phosphorylation of PLB.Our model reproduces positive peak FFR observed in rat ventricular myocytes during voltage-clamp studies both in the presence/absence of cAMP mediated -adrenergic stimulation. This study provides quantitative insight into the rate-dependence of Ca2+-induced Ca2+-release (CICR) by investigating the frequency-dependence of the trigger current (ICa;L) and RyR-release. It also highlights the relative role of the sodium-calcium exchanger (NCX) and the SERCA pump at higher frequencies, as well as the rate-dependence of sarcoplasmic reticulum (SR) Ca2+ content. A rigorous Ca2+ balance imposed on our investigation of these Ca2+ signalling pathways clarifies their individual roles. Here, we present a coupled electromechanical study emphasizing the rate-dependence of isometric force developed and also investigate the temperature-dependence of FFR. Our model provides mechanistic biophysically based explanations for the rate-dependence of CICR, generating useful and testable hypotheses. Although rat ventricular myocytes exhibit a positive peak FFR in the presence/absence of beta-adrenergic stimulation, they show a characteristic increase in the positive slope in FFR due to the presence of Norepinephrine or Isoproterenol. Our study identifies cAMP-mediated stimulation, and rate-dependent CaMKII-mediated up-regulation of ICa;L as the key mechanisms underlying the aforementioned positive FFR

    The selective peroxisome proliferator-activated receptor alpha modulator (SPPARM) paradigm : conceptual framework and therapeutic potential: A consensus statement from the International Atherosclerosis Society (IAS) and the Residual Risk Reduction Initiative (R3i) Foundation

    Get PDF
    In the era of precision medicine, treatments that target specific modifiable characteristics of high-risk patients have the potential to lower further the residual risk of atherosclerotic cardiovascular events. Correction of atherogenic dyslipidemia, however, remains a major unmet clinical need. Elevated plasma triglycerides, with or without low levels of high-density lipoprotein cholesterol (HDL-C), offer a key modifiable component of this common dyslipidemia, especially in insulin resistant conditions such as type 2 diabetes mellitus. The development of selective peroxisome proliferator-activated receptor alpha modulators (SPPARM) offers an approach to address this treatment gap. This Joint Consensus Panel appraised evidence for the first SPPARM agonist and concluded that this agent represents a novel therapeutic class, distinct from fibrates, based on pharmacological activity, and, importantly, a safe hepatic and renal profile. The ongoing PROMINENT cardiovascular outcomes trial is testing in 10,000 patients with type 2 diabetes mellitus, elevated triglycerides, and low levels of HDL-C whether treatment with this SPPARM agonist safely reduces residual cardiovascular risk.Peer reviewe
    corecore