23 research outputs found

    Syncrip/hnRNP Q influences synaptic transmission and regulates BMP signaling at the Drosophila neuromuscular synapse

    Get PDF
    Synaptic plasticity involves the modulation of synaptic connections in response to neuronal activity via multiple pathways. One mechanism modulates synaptic transmission by retrograde signals from the post-synapse that influence the probability of vesicle release in the pre-synapse. Despite its importance, very few factors required for the expression of retrograde signals, and proper synaptic transmission, have been identified. Here, we identify the conserved RNA binding protein Syncrip as a new factor that modulates the efficiency of vesicle release from the motoneuron and is required for correct synapse structure. We show that syncrip is required genetically and its protein product is detected only in the muscle and not in the motoneuron itself. This unexpected non-autonomy is at least partly explained by the fact that Syncrip modulates retrograde BMP signals from the muscle back to the motoneuron. We show that Syncrip influences the levels of the Bone Morphogenic Protein ligand Glass Bottom Boat from the post-synapse and regulates the pre-synapse. Our results highlight the RNA-binding protein Syncrip as a novel regulator of synaptic output. Given its known role in regulating translation, we propose that Syncrip is important for maintaining a balance between the strength of presynaptic vesicle release and postsynaptic translation

    The Genetics of Neuropathic Pain from Model Organisms to Clinical Application.

    Get PDF
    Neuropathic pain (NeuP) arises due to injury of the somatosensory nervous system and is both common and disabling, rendering an urgent need for non-addictive, effective new therapies. Given the high evolutionary conservation of pain, investigative approaches from Drosophila mutagenesis to human Mendelian genetics have aided our understanding of the maladaptive plasticity underlying NeuP. Successes include the identification of ion channel variants causing hyper-excitability and the importance of neuro-immune signaling. Recent developments encompass improved sensory phenotyping in animal models and patients, brain imaging, and electrophysiology-based pain biomarkers, the collection of large well-phenotyped population cohorts, neurons derived from patient stem cells, and high-precision CRISPR generated genetic editing. We will discuss how to harness these resources to understand the pathophysiological drivers of NeuP, define its relationship with comorbidities such as anxiety, depression, and sleep disorders, and explore how to apply these findings to the prediction, diagnosis, and treatment of NeuP in the clinic

    The genetics of neuropathic pain from model organisms to clinical application

    Get PDF
    Neuropathic pain (NeuP) arises due to injury of the somatosensory nervous system and is both common and disabling, rendering an urgent need for non-addictive, effective new therapies. Given the high evolutionary conservation of pain, investigative approaches from Drosophila mutagenesis to human Mendelian genetics have aided our understanding of the maladaptive plasticity underlying NeuP. Successes include the identification of ion channel variants causing hyper-excitability and the importance of neuro-immune signaling. Recent developments encompass improved sensory phenotyping in animal models and patients, brain imaging, and electrophysiology-based pain biomarkers, the collection of large well-phenotyped population cohorts, neurons derived from patient stem cells, and high-precision CRISPR generated genetic editing. We will discuss how to harness these resources to understand the pathophysiological drivers of NeuP, define its relationship with comorbidities such as anxiety, depression, and sleep disorders, and explore how to apply these findings to the prediction, diagnosis, and treatment of NeuP in the clinic

    Genomic epidemiology of SARS-CoV-2 in a UK university identifies dynamics of transmission

    Get PDF
    AbstractUnderstanding SARS-CoV-2 transmission in higher education settings is important to limit spread between students, and into at-risk populations. In this study, we sequenced 482 SARS-CoV-2 isolates from the University of Cambridge from 5 October to 6 December 2020. We perform a detailed phylogenetic comparison with 972 isolates from the surrounding community, complemented with epidemiological and contact tracing data, to determine transmission dynamics. We observe limited viral introductions into the university; the majority of student cases were linked to a single genetic cluster, likely following social gatherings at a venue outside the university. We identify considerable onward transmission associated with student accommodation and courses; this was effectively contained using local infection control measures and following a national lockdown. Transmission clusters were largely segregated within the university or the community. Our study highlights key determinants of SARS-CoV-2 transmission and effective interventions in a higher education setting that will inform public health policy during pandemics.</jats:p

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    Enhanced Sleep Is an Evolutionarily Adaptive Response to Starvation Stress in <i>Drosophila</i>

    No full text
    <div><p>Animals maximize fitness by modulating sleep and foraging strategies in response to changes in nutrient availability. Wild populations of the fruit fly, <i>Drosophila melanogaster</i>, display highly variable levels of starvation and desiccation resistance that differ in accordance with geographic location, nutrient availability, and evolutionary history. Further, flies potently modulate sleep in response to changes in food availability, and selection for starvation resistance enhances sleep, revealing strong genetic relationships between sleep and nutrient availability. To determine the genetic and evolutionary relationship between sleep and nutrient deprivation, we assessed sleep in flies selected for desiccation or starvation resistance. While starvation resistant flies have higher levels of triglycerides, desiccation resistant flies have enhanced glycogen stores, indicative of distinct physiological adaptations to food or water scarcity. Strikingly, selection for starvation resistance, but not desiccation resistance, leads to increased sleep, indicating that enhanced sleep is not a generalized consequence of higher energy stores. Thermotolerance is not altered in starvation or desiccation resistant flies, providing further evidence for context-specific adaptation to environmental stressors. F<sub>2</sub> hybrid flies were generated by crossing starvation selected flies with desiccation selected flies, and the relationship between nutrient deprivation and sleep was examined. Hybrids exhibit a positive correlation between starvation resistance and sleep, while no interaction was detected between desiccation resistance and sleep, revealing that prolonged sleep provides an adaptive response to starvation stress. Therefore, these findings demonstrate context-specific evolution of enhanced sleep in response to chronic food deprivation, and provide a model for understanding the evolutionary relationship between sleep and nutrient availability.</p></div

    Selection for DR does not alter sleep.

    No full text
    <p>A) Sleep profiles depicting hourly sleep reveal that sleep in SR<sub>c</sub> flies is increased during both day and night compared to the DR<sub>c</sub> flies and respective controls (N = 64 for all groups). B) The total sleep duration over 24hrs on food is significantly longer in SR<sub>c</sub> flies than in F<sub>SRc</sub> flies. No differences are observed between DR<sub>c</sub> flies and F<sub>DRc</sub> flies (SR<sub>c</sub> group: P<0.001; DR<sub>c</sub> lines: P>0.05; See <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0131275#pone.0131275.s004" target="_blank">S1 Table</a>). C) Beam crossings per waking minute are reduced in DR<sub>c</sub> and SR<sub>c</sub> flies compared to respective controls (SR<sub>c</sub> group: P<0.001; DR<sub>c</sub> lines: P<0.001; See <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0131275#pone.0131275.s004" target="_blank">S1 Table</a>).</p

    Distinct resistance to nutrient deprivation in SR and DR flies.

    No full text
    <p>Survival of flies placed in activity monitors under starvation conditions. A) Flies from the SR<sub>c</sub> lines survived longer than F<sub>SRc</sub> controls, whereas DR lines do not differ from F<sub>DRc</sub> controls (SR lines: P < 0.001 in all groups; DR lines: P>0.05). B) DR<sub>c</sub> flies survive longer than F<sub>DRc</sub> controls under desiccation conditions. SR<sub>c</sub> flies were also resistant to desiccation compared to F<sub>SRc</sub> controls (DR<sub>c</sub> line: P<0.001; SR<sub>c</sub> line: P<0.001, See <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0131275#pone.0131275.s004" target="_blank">S1 Table</a>.) C) SR<sub>c</sub> flies did not live as long as F<sub>SRc</sub> controls, and no difference in longevity was observed in DR<sub>c</sub> flies and controls, under thermal stress conditions (SR lines: P = 0.01; DR lines P>0.05; See <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0131275#pone.0131275.s004" target="_blank">S1 Table</a>).</p
    corecore