539 research outputs found

    Self and Shared Leadership in Decision Quality: A Tale of Two Sides

    Get PDF
    Purpose This study aims to investigate the relationship between shared leadership (SL) and decision quality, utilizing shared leadership theory (SLT) and behavioral decision theory (BDT). The authors will explore the mediating role of “decision comprehensiveness” in the SL–decision quality linkage. Additionally, the authors will examine how individual “self-leadership” and “debate” among team members moderate the relationship between SL and decision comprehensiveness. Design/methodology/approach The authors tested the hypothesized moderated mediation model using a sample of 506 professionals employed in 112 research and development (R&D) teams, along with their direct managers from large Italian firms. To examine the relationships, the authors employed confirmatory factor analyses and path analyses. In order to address endogeneity concerns, the authors incorporated an instrumental variable, namely delegation, into the analysis. Findings SL positively influences decision quality, mediated by decision comprehensiveness, where teams include comprehensive information in decision-making. The level of debate among team members positively moderates the SL–decision comprehensiveness relationship. High levels of self-leadership can harm SL by reducing decision comprehensiveness, indicating a downside. However, low or moderate levels of self-leadership do not harm decision comprehensiveness and can even benefit SL. Originality/value This is the first work to investigate the relationship between SL and decision quality, shedding light on the mechanisms underlying this association. By integrating SLT and BDT, the authors provide insights into how managers can make higher-quality decisions within self-leading teams. Moreover, this research makes a distinct contribution to the field of self-leadership by delineating its boundaries and identifying a potentially negative aspect within the self-influence process

    Center-of-mass effects on the quasi-hole spectroscopic factors in the 16O(e,e'p) reaction

    Get PDF
    The spectroscopic factors for the low-lying quasi-hole states observed in the 16O(e,e'p)15N reaction are reinvestigated with a variational Monte Carlo calculation for the structure of the initial and final nucleus. A computational error in a previous report is rectified. It is shown that a proper treatment of center-of-mass motion does not lead to a reduction of the spectroscopic factor for pp-shell quasi-hole states, but rather to a 7% enhancement. This is in agreement with analytical results obtained in the harmonic oscillator model. The center-of-mass effect worsens the discrepancy between present theoretical models and the experimentally observed single-particle strength. We discuss the present status of this problem, including some other mechanisms that may be relevant in this respect.Comment: 14 pages, no figures, uses Revtex, to be published in Phys. Rev. C 58 (1998

    Der Transfer von stabilem Iod ueber den Weide-Kuh-Milch-Pfad

    Get PDF

    Correlation effects in single-particle overlap functions and one-nucleon removal reactions

    Get PDF
    Single-particle overlap functions and spectroscopic factors are calculated on the basis of the one-body density matrices (ODM) obtained for the nucleus 16O^{16}O employing different approaches to account for the effects of correlations. The calculations use the relationship between the overlap functions related to bound states of the (A-1)-particle system and the ODM for the ground state of the A-particle system. The resulting bound-state overlap functions are compared and tested in the description of the experimental data from (p,d) reactions for which the shape of the overlap function is important.Comment: 11 pages, 4 figures include

    Maximum occupation number for composite boson states

    Full text link
    One of the major differences between fermions and bosons is that fermionic states have a maximum occupation number of one, whereas the occupation number for bosonic states is in principle unlimited. For bosons that are made up of fermions, one could ask the question to what extent the Pauli principle for the constituent fermions would limit the boson occupation number. Intuitively one can expect the maximum occupation number to be proportional to the available volume for the bosons divided by the volume occupied by the fermions inside one boson, though a rigorous derivation of this result has not been given before. In this letter we show how the maximum occupation number can be calculated from the ground-state energy of a fermionic generalized pairing problem. A very accurate analytical estimate of this eigenvalue is derived. From that a general expression is obtained for the maximum occupation number of a composite boson state, based solely on the intrinsic fermionic structure of the bosons. The consequences for Bose-Einstein condensates of excitons in semiconductors and ultra cold trapped atoms are discussed.Comment: 4 pages, Revte

    Two-proton overlap functions in the Jastrow correlation method and cross section of the 16^{16}O(e,epp)14(e,e^{\prime}pp)^{14}Cg.s._{\rm g.s.} reaction

    Full text link
    Using the relationship between the two-particle overlap functions (TOF's) and the two-body density matrix (TDM), the TOF's for the 16^{16}O(e,epp)14(e,e^{\prime}pp)^{14}Cg.s._{\rm g.s.} reaction are calculated on the basis of a TDM obtained within the Jastrow correlation method. The main contributions of the removal of 1S0^1S_0 and 3P1^3P_1 pppp pairs from 16^{16}O are considered in the calculation of the cross section of the 16^{16}O(e,epp)14(e,e^{\prime}pp)^{14}Cg.s._{\rm g.s.} reaction using the Jastrow TOF's which include short-range correlations (SRC). The results are compared with the cross sections calculated with different theoretical treatments of the TOF's.Comment: 10 pages, 8 figures, ReVTeX

    Quasiparticle properties in a density functional framework

    Get PDF
    We propose a framework to construct the ground-state energy and density matrix of an N-electron system by solving selfconsistently a set of single-particle equations. The method can be viewed as a non-trivial extension of the Kohn-Sham scheme (which is embedded as a special case). It is based on separating the Green's function into a quasi-particle part and a background part, and expressing only the background part as a functional of the density matrix. The calculated single-particle energies and wave functions have a clear physical interpretation as quasiparticle energies and orbitals.Comment: 12 pages, 1 figure, to be published in Phys. Rev.

    Quasiparticles in Neon using the Faddeev Random Phase Approximation

    Get PDF
    The spectral function of the closed-shell Neon atom is computed by expanding the electron self-energy through a set of Faddeev equations. This method describes the coupling of single-particle degrees of freedom with correlated two-electron, two-hole, and electron-hole pairs. The excitation spectra are obtained using the Random Phase Approximation, rather than the Tamm-Dancoff framework employed in the third-order algebraic diagrammatic contruction [ADC(3)] method. The difference between these two approaches is studied, as well as the interplay between ladder and ring diagrams in the self-energy. Satisfactory results are obtained for the ionization energies as well as the energy of the ground state with the Faddeev-RPA scheme that is also appropriate for the high-density electron gas.Comment: Revised manuscript. The working equations of the Faddeev-RPA method are included in the Appendi

    Overlap functions in correlation methods and quasifree nucleon knockout from 16^{16}O

    Get PDF
    The cross sections of the (e,eNe,e'N) and (γ,p\gamma,p) reactions on 16^{16}O are calculated, for the transitions to the 1/21/2^{-} ground state and the first 3/23/2^{-} excited state of the residual nucleus, using single-particle overlap functions obtained on the basis of one-body density matrices within different correlation methods. The electron-induced one-nucleon knockout reaction is treated within a nonrelativistic DWIA framework. The theoretical treatment of the (γ,p\gamma,p) reaction includes both contributions of the direct knockout mechanism and of meson-exchange currents. The results are sensitive to details of the different overlap functions. The consistent analysis of the reaction cross sections and the comparison with the experimental data make it possible to study the nucleon--nucleon correlation effects.Comment: 26 pages, LaTeX, 5 Postscript figures, submitted to PR
    corecore