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Abstract

The spectroscopic factors for the low-lying quasi-hole states observed in the
16O(e, e′p)15N reaction are reinvestigated with a variational Monte Carlo cal-

culation for the structure of the initial and final nucleus. A computational

error in a previous report is rectified. It is shown that a proper treatment of

center-of-mass motion does not lead to a reduction of the spectroscopic fac-

tor for p-shell quasi-hole states, but rather to a 7% enhancement. This is in

agreement with analytical results obtained in the harmonic oscillator model.

The center-of-mass effect worsens the discrepancy between present theoretical

models and the experimentally observed single-particle strength. We discuss

the present status of this problem, including some other mechanisms that may

be relevant in this respect.
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I. INTRODUCTION

In present-day (e, e′p) experiments [1] one can determine quite accurately single-particle
(s.p.) overlap functions between an A-particle nuclear target in its ground state and low-
lying (quasi-hole) states of the (A − 1) residual system. The spectroscopic factor, defined
as the norm of the overlap function, is equal to unity only in the fixed-center mean-field
approximation. Experimentally one finds [2] that spectroscopic factors of about S ≈ 0.6−0.7
are needed to explain the data. Such deviations of S from unity are normally ascribed to
nucleon-nucleon (NN) correlations. The observed values indicate the sensitivity of the quasi-
elastic (e, e′p) cross section to correlation effects in the initial and final state. Several nuclear
many-body calculations have been made in attempts to explain the reduced spectroscopic
factors of the p1/2 and p3/2 quasi-hole states seen in the 16O(e, e′p) reaction [3–6].

Fixed-center mean-field wave functions are not realistic for light systems like 16O, since
they are not translationally invariant, i.e. they contain spurious center-of-mass (c.m.) mo-
tion. Variational Monte Carlo (VMC) calculations of the 16O ground state [7] and the
15N(p3/2) quasi-hole state [3] , in which the nuclear wave functions are explicitly transla-
tionally invariant, have been made to address this problem. It was reported in [3] that c.m.
correlations reduced the p-shell spectroscopic factor by ∼ 12% even in absence of dynam-
ical NN correlations. However, as was noted in [8], this reduction contradicts the results
obtained in the harmonic oscillator (h.o.) model, which predicts an enhancement by 7%
for the p-shell spectroscopic factor in 16O [9] due to c.m. correlations. The discrepancy
with the h.o. model values indicated an error in the computer program of [3]. It has now
been identified, and the corrected results are presented in the third Section of this paper.
The correction simply involves a rescaling of the s.p. overlap function reported in [3] by
the factor (16

15
)3/2. This brings the results without dynamical NN correlations into perfect

agreement with the h.o. results, but the full calculation now predicts a p-shell spectroscopic
factor Sp = 0.98, considerably different from the experimental values.

The remainder of the paper is organized as follows. In Section II we examine the concept
of overlap functions with translational invariance of the nuclear wave functions taken into
account, and point out some consequences for the description of knock-out reactions. We
also mention general results of the h.o. model and apply it to the case of the 16O nucleus. The
theoretical description of the quasi-hole states observed in the 16O(e, e′p) reaction is treated
in Section III, where we correct the results of [3]. It is pointed out that a proper treatment
of c.m. motion in other calculations would also worsen the discrepancy with experimental
data. In Section IV we look at the order of magnitude of two simple corrections to the
(e, e′p) cross section. The present status of the problem is discussed in Section V.

II. CENTER-OF-MASS MOTION AND KNOCK-OUT REACTIONS

A. Overlap functions in self-bound systems

For systems which are localized around a fixed force center (e.g. the electrons of an atom),
one defines a s.p. overlap function φ between normalized A and (A− 1) particle systems as

φ(xA) =
√
A
∫
dx1 . . . dxA−1Φ

†
(A−1)(x1, . . . , xA−1)Φ(A)(x1, . . . , xA). (1)
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(The notation xi includes the spatial coordinate, ri, and the appropriate spin and isospin de-
grees of freedom.) In the case of Fermi systems, the Φ(A) and Φ(A−1) are antisymmetric wave
functions, and as a consequence, the normalization of the overlap function (or spectroscopic
factor S) has the property

S =
∫
dxA|φ(xA)|2 ≤ 1. (2)

In nuclei there is no fixed external force center, but the nucleons are localized around
their c.m. due to their mutual interactions. The eigenstates of such a self-bound system can
be factored as

Φ(A)(x1, . . . , xA) = exp(iK ·RA)Ψ(A)(x1, . . . , xA), (3)

with Ψ(A) the intrinsic, translationally invariant, wave function of the system, and the plane-
wave factor describing the c.m. motion; K is the total momentum and RA is the position
of the c.m. The properties of the overlap functions are somewhat different in this case. A
detailed analysis of many s.p. quantities in self-bound systems (the one-body density matrix,
natural orbitals, spectral function etc.) will be given in a future publication [10].

For the present discussion it will be sufficient to note that, if the intrinsic wave functions
are normalized according to∫

dx1 . . . dxAδ(RA)|Ψ(A)(x1, . . . , xA)|2 = 1, (4)

then the overlap function ψ must be defined as [11]

ψ(xA) =
√
A
∫
dx1 . . . dxA−1δ(RA−1)Ψ

†
(A−1)(x1, . . . , xA−1)Ψ(A)(x1, . . . , xA). (5)

As shown in Section II.B, the overlap function defined according to Eqs.(4-5) is indeed the
counterpart for self-bound systems of Eq.(1), and it is the natural quantity appearing in the
description of knock-out reactions when some standard approximations are made.

It should also be kept in mind that the spectroscopic factors in self-bound Fermi systems,

S =
∫
dxA|ψ(xA)|2, (6)

can be larger than one [with deviations of the order O(1/A)]. Although this was already
known before [9,12], the fact does not seem to be widely appreciated. The most extreme–
though somewhat forced–example is that of two identical fermions (e.g. two spin-up neu-
trons). The intrinsic wave function can be written as Ψ(2) = f(r1−r2), with

∫
dr|f(r)|2 = 1.

Then the overlap function with the (only) intrinsic one-particle state, Ψ(1)(r1) = 1, is given

by ψ(r2) =
√

2f(−r2), and the corresponding spectroscopic factor is S = 2, regardless of
the Fermi or Bose nature of the particles. A more realistic illustration for three particles is
considered in the Appendix.
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B. Intrinsic transition matrix elements for knock-out reactions

In this Section we extend the standard derivation of the plane-wave impulse approx-
imation (PWIA) amplitude in fixed-center systems to the case of knock-out reactions on
self-bound systems, in order to justify the definition Eq.(5) for the overlap function. We
consider for simplicity the transition matrix elements of a scalar one-particle external probe,
e.g. the operator ρ(q) =

∑A
j=1 exp(iq · rj), between translationally invariant initial and final

states of the form (3). The matrix element is readily separated into a momentum conserving
δ-function and the intrinsic transition matrix element,

〈Φ(A)f |ρ(q)|Φ(A)i〉 = (2π)3δ(Ki + q−Kf)〈Ψ(A)f |ρ(q)|Ψ(A)i〉, (7)

given by

〈Ψ(A)f |ρ(q)|Ψ(A)i〉 =
∫
dx1 . . . dxAδ(RA)Ψ†(A)f (x1, . . . , xA)

A∑
j=1

exp(iq · rj)Ψ(A)i(x1, . . . , xA).

(8)

In knock-out reactions where the residual (A−1) nucleus is left in a bound state Ψ(A−1),
the intrinsic final state can be specified by its asymptotic behavior,

lim
|rA−RA−1|→∞

Ψ(A)p(x1, . . . , xA) = C exp[ip · (rA −RA−1)]Ψ(A−1)(x1, . . . , xA−1), (9)

with p the relative momentum between the knocked-out nucleon and the c.m. of the remain-
ing ones.

In the plane-wave approximation, distortion effects on the escaping particle are neglected,
and we simply approximate

Ψ(A)p(x1, . . . , xA) ≈
(2π)−3/2√
A!(A− 1)!

A
{
exp[ip · (rA −RA−1)]Ψ(A−1)(x1, . . . , xA−1)

}
, (10)

with A the antisymmetrized sum over all coordinate permutations. The wave functions
Ψ(A)p are not orthogonal to the initial state Ψ(A)i, and also not mutually orthogonal, since

〈Ψ(A)p|Ψ(A)p′〉 =
∫
dx1 . . . dxAδ(RA)Ψ†(A)p(x1, . . . , xA)Ψ(A)p′(x1, . . . , xA) (11)

= δ(p− p′)− C(p,p′), (12)

with the non-orthogonality correction C(p,p′) given by

C(p,p′) = (2π)−3
∫
dxdx′ ρ(x, x′) exp[ir · (p′ +

1

A− 1
p)] exp[−ir′ · (p +

1

A− 1
p′)]. (13)

The quantity ρ(x, x′) is the one-body density matrix of the intrinsic (A − 1)-particle state
Ψ(A−1) [10,11],

ρ(x, x′) = (A− 1)
∫
dx1 . . . dxA−2δ(RA−2)Ψ

†
(A−1)(x1, . . . , xA−2, x)Ψ(A−1)(x1, . . . , xA−2, x

′).

(14)
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Similarly as for fixed-center systems, the nonorthogonality correction C(p,p′) is suppressed
by the momentum dependence of the Fourier transform of ρ(x, x′) for momenta p or p′ larger
than typical momenta contained in the bound-state Ψ(A−1), and can be neglected under the
usual (e, e′p) kinematical conditions.

The amplitude itself can now be written as

〈Ψ(A)p|ρ(q)|Ψ(A)i〉 =
√
A

A∑
j=1

∫
dx1 . . . dxAδ(RA) Ψ†(A−1)(x1, . . . , xA−1) (15)

exp[−ip · (rA −RA−1)] exp[iq · rj] Ψ(A)(x1, . . . , xA),

The impulse approximation implies that the nucleon which has absorbed the momentum of
the probe gets ejected, and corresponds to retaining only the term with j = A in Eq.(15).
The result is

〈Ψ(A)p|ρ(q)|Ψ(A)i〉 ≈ APWIA(p,q) = (2π)−3/2
∫
dxA exp[−irA · (p−

A− 1

A
q)]ψ(xA), (16)

where ψ(xA) given by Eq.(5), i.e. the PWIA amplitude still scales with the Fourier transform
of the overlap function, at missing momentum p− A−1

A
q.

The antisymmetrization correction terms (with j 6= A) in Eq.(15) can be recombined
into

AA.S.(p,q) = (2π)−3/2
∫
dxdx′F (x, x′) exp[ir · (

A− 1

A
q +

1

A− 1
p)] exp[−ir′ · (p +

q

A
)],

(17)

with

F (x, x′) =
√
A(A− 1)

∫
dx1 . . . dxA−2δ(RA−2)Ψ

†
(A−1)(x1, . . . , xA−2, x)Ψ(A)(x1, · · · , xA−2, x, x

′).

(18)

This correction is again suppressed by the momentum dependence of the Fourier transform
of F (x, x′) when p and q are large. The magnitude of the nonorthogonality and antisym-
metrization corrections will be estimated in Section IV.B for the kinematical conditions used
in the (e, e′p) experiment of [13].

C. Intrinsic Slater determinants

Descriptions of all but the lightest nuclei usually involve fixed-center (shell-model) wave
functions of the Slater determinant (SD) type,

Φ(A)(x1, . . . , xA) =
1
√
A!

Det[φhj(xi)]i,j=1,...,A. (19)

These wave functions contain spurious c.m. motion which does not correspond to the intrinsic
degrees of freedom in self-bound systems. The correct intrinsic wave function describing the
uncorrelated motion of A particles in A orbits around their c.m. is given by
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Ψ(A)(x1, . . . , xA) =
1
√
A!

Det[φhj(ri −RA, αi)]i,j=1,...,A, (20)

where αi represents spin and isospin degrees of freedom. These intrinsic Slater determinants
(ISD) are obviously translationally invariant, and should be used in combination with Eqs.(4-
5), to calculate s.p. overlap functions and spectroscopic factors.

The effect of the spurious c.m. motion on overlap functions and spectroscopic factors
is non-trivial, even when considering transitions between a single ISD Ψ(A) like (20) and a
one-hole state Ψ(A−1)hn obtained by removing the orbital hn,

Ψ(A−1)hn(x1, . . . , xA−1) =
1√

(A− 1)!
Det[φhj (ri −RA−1, αi)]i,j=1,...,A;i6=A;j 6=n. (21)

In contrast to the situation in fixed-center systems, the presence of the c.m. δ-function in
Eqs.(4-5) makes the calculation of the normalization and overlap integrals quite complicated,
even for ISD wave functions. Only if the orbitals that build up the ISD are chosen to be h.o.
wave functions can the overlap function and spectroscopic factor be evaluated analytically.
The simplest non-trivial illustration is for a h.o. well containing three neutrons, one spin-
down and two spin-up; this is worked out in the Appendix.

The general h.o. model has been studied in [9], where overlaps were considered between
an A-nucleon ground-state configuration in the h.o. shell model, and the (A − 1)-nucleon
one-hole states. It was found that, in each spin-isospin space στ , the spectroscopic factor
for the valence hole state (corresponding to a hole in the occupied shell with the largest
oscillator quantum number Nv) is larger than one and given by

S(στ)
v =

(
A

A− 1

)Nv
. (22)

Moreover, for h.o. orbitals the spectroscopic sum rule remains satisfied in the intrinsic frame1:
in each spin-isospin space the sum of the spectroscopic factors S

(στ)
h of all one-hole ISD’s

yields the number of particles A(στ)

∑
h

n
(στ)
h S

(στ)
h = A(στ), (23)

with n
(στ)
h the number of particles occupying the main h.o. shell h. Since the sum rule is

satisfied and the spectroscopic factor for the valence hole state is larger than one, the deeper
hole states are partly spurious and have S ≤ 1.

For the case of 16O we have ns = 1, np = 3, Nv = 1; the h.o. model predicts for a hole
in the p-shell Sp = 16

15
≈ 1.07, and, through the sum rule (23), Ss = 4 − np ×

16
15

= 4
5

for a
hole in the s-shell. More realistic choices of the s.p. wave functions, such as Woods-Saxon
(W.S.), preclude an analytical treatment of c.m. effects. Nevertheless one can expect results
close to the h.o. values for a light nucleus like 16O, where h.o. and W.S. wave functions are

1In general, the spectroscopic sum rule is not satisfied by considering just one-hole states of ISD’s

made of non-h.o. orbitals; this is also illustrated for a three-neutron example in the Appendix.
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rather similar. We checked this by a direct computation of the overlap functions in 16O with
W.S. wave functions in the ISD’s, exploiting the fact that for ISD the many-body integrals
in Eqs.(4-5) can be reduced to a sequence of one-body integrals. e.g. we have (apart from
normalization factors)

ψhn(xA) =
∑ A

m=1φhm(
A− 1

A
rA, αA)

×
∫
dkDet

[∫
dx exp[ik · r]φ∗hi(x)φhj(r−

1

A
rA, α)

]
i,j=1,...,A;i6=n;j 6=m

. (24)

As expected the spectroscopic factors obtained with the W.S. wave functions practically
coincide with the h.o. results.

Note that the correlated many-body wave functions considered in the next section are
more complicated than single ISD’s, and Monte Carlo quadrature was used there to calculate
the s.p. overlap functions and spectroscopic factors. We verified that, for the case of single
ISD’s, the Monte Carlo quadrature and a direct evaluation of Eq.(24) lead to the same
result.

III. SPECTROSCOPIC FACTORS FOR QUASI-HOLE STATES IN 16O

In the variational Monte Carlo framework of [3,7], the intrinsic wave function of the 16O
ground state has the form

Ψ(A)(x1, . . . , xA) = F̂ (x1, . . . , xA)
1
√
A!

Det
[
φhj(ri −RA, αi)

]
i,j=1,...,A

(25)

The intrinsic Slater determinant is built up with the s.p. wave functions φh, and incorporates
the mean-field aspects. As explained in Section II.C, it is explicitly translationally invariant.
The correlation factor F̂ contains two- and three-particle correlations of central, spin, isospin,
tensor and spin-orbit type, and is translationally invariant by itself.

The correlation factor and the s.p. wave functions were determined by a minimization of
the expectation value of the many-body Hamiltonian

H = −
h̄2

2m

A∑
i=1

∇2
i +

∑
i<j

vij +
∑
i<j<k

Vijk, (26)

where the Argonne v14 model of the two-nucleon interaction [14] and the Urbana model VII
of the three-nucleon interaction [15] were used. A detailed description of the variational
procedure can be found in [7].

The intrinsic wave functions Ψ(A−1)hn of the quasi-hole states in 15N are approximated
as

Ψ(A−1)hn(x1, . . . , xA−1) = F̂ (x1, . . . , xA−1)
1
√
A!

Det
[
φhj(ri −RA−1, αi)

]
i,j=1,...,A;i6=A;j 6=n

, (27)

i.e. by retaining the correlation factor and s.p. orbitals of 16O and omitting in the determinant
the column with the corresponding φhj .
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The overlap function for the p3/2 quasi-hole state was then calculated according to Eqs.(4-
5). When dynamical NN correlations were neglected (by putting the correlation factor
F̂ = 1), a spectroscopic factor Sp3/2

= 0.88 was found. This case corresponds to the s.p.
overlap between single intrinsic Slater determinants discussed in Section II.C, for which the
harmonic oscillator model predicts Sp = 1.07. The large discrepancy indicates an error in
the computer program used in [3], which has now been identified and corrected.

To correct the error in [3], the s.p. overlap functions calculated with translationally

invariant wave functions simply have to be rescaled by (16
15

)
3
2 . The corrected spectroscopic

factor with only c.m. correlations is thus given by Sp3/2
= 0.88 × (16

15
)3 = 1.07, and is now

in perfect agreement with the h.o. model. The results including dynamical NN correlations
in [3] must be changed likewise, and we get Sp3/2

= 1.06 when central NN correlations are
added, and Sp3/2

= 0.98 for the complete calculation. The value Sp3/2
= 0.90, obtained by

including dynamical NN correlations, but no c.m. correlations, does not change.
We note that the proper treatment of c.m. motion makes the discrepancy with the

experimentally obtained spectroscopic factors severely worse. In [13] a spectroscopic factor
Sp1/2

(g.s.) = 0.61 is reported for the 1/2− ground state in 15N , whereas the lowest 3/2− state
at 6.32 MeV has Sp3/2

(6.32) = 0.53. The experimental low-lying p3/2 strength is fragmented
over three states at 6.32, 9.93 and 10.70 MeV, of which the 6.32 MeV state is the dominant
one, with 87% of the total strength. Since we did not include fragmentation due to low-
energy configuration mixing, our variational result Sp3/2

= 0.98 should be compared to the
total experimental value Sp3/2

= 0.53/0.87 = 0.61. The c.m. correction is not limited to
variational calculations, but affects other theoretical models as well, such as the Green’s
function calculations in [4–6], for which c.m. motion was neglected. Thus, the result Sp3/2

=

0.91 in [5] would (in first order) be changed by c.m. correlations to Sp3/2
= 0.91× 16

15
= 0.97,

a value similar to ours, while that of [6] (where low-energy fragmentation is taken into
account) is increased from Sp3/2

(6.32) = 0.76 to Sp3/2
(6.32) = 0.81.

IV. OTHER CORRECTIONS TO THE (E,E′P ) CROSS SECTION

A correct treatment of c.m. motion enhances the spectroscopic factor of valence hole
states at the mean-field level, leading e.g. to a 7% enhancement for the p-shell spectroscopic
factors in 16O. This results in present calculations [3–6] of the 15N spectroscopic factors
giving values that are much larger than the experimental values. In this Section we discuss
two simple mechanisms, not taken into account in [3–6], that could possibly further reduce
the theoretical cross section for knock-out of a p-shell nucleon. Firstly, the spectroscopic
factor itself could change at the mean-field level if we allow for different mean fields in the
target and residual nucleus. Secondly, corrections to the PWIA reaction amplitude due to
nonorthogonality and antisymmetrization may become more important when c.m. motion
is taken into account.

A. Different s.p. orbitals in target and residual nucleus

The assumption [implicit in Eq.(27)], of having the same set of s.p. wave functions
describing the target and residual nucleus, is likely to become less adequate as A decreases.

8



In principle one could check this by making a separate variational calculation for the 15N
states, but the sensitivity of the results on the shape of the s.p. wave functions is not
large enough to do this reliably. In order to have an idea about the magnitude of this
effect we calculated p-shell spectroscopic factors in a fixed-center mean-field model, using
slightly different W.S. well shapes for the protons in 15N and 16O, and keeping the neutron
wells identical. In this case it is easy to show that Sp = Q4

sQ
10
p , with Qs (Qp) the overlap

between the (slightly) different proton s-orbitals (p-orbitals) in 16O and 15N. If we fitted
the W.S. parameters to the experimental charge densities available in the literature [16], we
find Sp = 0.946, i.e. a substantial 5.4% reduction. However, a minimal change in the 16O
geometry (just reducing the W.S. radius to reproduce the rms radius of 15N) gives only a
1.2% reduction. We tend to regard the latter value as the more realistic. The rms radius
of 15N is better established than the whole charge density. The 15N charge density in [16]
has the peculiarity of overshooting the 16O charge density in the interior, and this feature is
responsible for the more substantial effect. Also note that, lacking information, the neutron
wells were taken identical in 15N and 16O. Relaxing this assumption would also contribute to
the reduction of the proton p-shell spectroscopic factor. We estimate therefore the reduction
of Sp3/2

due to changes in the s.p. wave functions to be at most about 5% and probably less.

B. Nonorthogonality and antisymmetrization corrections

Here we look at the effects of nonorthogonality of the final scattering states Ψ(A)p in
Eq.(10) and the antisymmetrization correction (17) of the amplitude. With fixed-center wave
functions these effects are known to be small under normal (e, e′p) kinematical conditions,
but it is not inconceivable that c.m. effects change this for intrinsic wave functions. Note
e.g. that in the fixed-center frame the orthogonality corrections vanish if the final state is
a SD with one of the bound hole states replaced with a continuum state of the same mean
field, whereas this is no longer the case when ISD are used.

In order to handle the nonorthogonality corrections on the amplitude, we consider the
Löwdin transformation on the set of final scattering states Ψ(A)p [17]. The orthonormal set
of Löwdin transformed states can be expressed as

|Ψ̃(A)p〉 =
∫
dp′[N−1/2]pp′|Ψ(A)p′〉, (28)

in terms of the overlap matrix [N ],

[N ]pp′ = 〈Ψ(A)p′ |Ψ(A)p〉 = δ(p− p′)− C(p,p′), (29)

given by Eq.(11). It can be shown that this transformation does not change the correct
asymptotic behavior (9) of the final scattering states.

The amplitude can now be expanded in powers of the small correction C, and up to first
order we get

〈Ψ̃(A)p|ρ(q)|Ψ(A)i〉 = 〈Ψ(A)p|ρ(q)|Ψ(A)i〉+
1

2

∫
dp′C(p,p′)〈Ψ(A)p′ |ρ(q)|Ψ(A)i〉. (30)

Using Eqs.(16-17) and neglecting antisymmetrization corrections in the (small) second term
of Eq.(30), the amplitude becomes
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〈Ψ̃(A)p|ρ(q)|Ψ(A)i〉 = APWIA(p,q) +AA.S.(p,q) +ALöw(p,q), (31)

with the first order Löwdin correction given by

ALöw(p,q) = −
1

2

∫
dp′C(p,p′)APWIA(p′,q). (32)

In the harmonic oscillator model the magnitude of the different terms in Eq.(31) can be
easily estimated by concentrating on the Gaussian part of the momentum dependence. As
an example, the exponent in the Gaussian part of the left-hand-side of Eq.(5) contains

A∑
i=1

(ri −RA)2 +
A−1∑
i=1

(ri −RA−1)
2 =

A− 1

A
(rA −RA)2 + 2

A−1∑
i=1

(ri −RA−1)
2, (33)

and it follows that

ψ(x) = exp[−
1

2b2
A− 1

A
r2]× [Polynomial in r]. (34)

As a consequence, the Gaussian part of the momentum dependence of APWIA is

APWIA ∼ exp[−
b2

2

A

A− 1
(p−

A− 1

A
q)2]. (35)

Similarly we find

ρ(x, x′) ∼ exp[−
1

2b2
(r2 + r′

2
)], (36)

C(p,p′) ∼ exp[−
b2

2

A− 1

A− 2
{(p′ +

1

A− 1
p)2 + (p +

1

A− 1
p′)2}], (37)

ALöw(p,q) ∼
∫
dp′C(p,p′) exp[−

b2

2

A

A− 1
(p′ −

A− 1

A
q)2],

∼ exp[−
b2

2

A

A− 1
{(p +

1

A
q)2 +

A− 2

2A
q2}]. (38)

The last result also holds for the antisymmetrization correction AA.S.(p,q).
The NIKHEF 16O(e, e′p) experiment [13] was performed under quasi-elastic parallel kine-

matics, with a roughly constant laboratory proton kinetic energy TpL ≈ 90 MeV and missing
momentum pm = pL − qL scanned in the region (-150 , 250) MeV/c. Under these kinemat-
ical conditions the magnitude2 of the correction term (38) is very small compared to the
magnitude (35) of the leading PWIA term in the amplitude, the ratio ranging from 4×10−6

at the most negative pm, to 3× 10−5 at pm=0, and growing to 6× 10−3 at the most positive
pm (corresponding to the smallest qL). To get a 10% correction at pm = 0, one would need
protons ejected with only TpL ≈ 20 MeV. We conclude that, under normal (e, e′p) kinemat-
ics, the nonorthogonality3 and antisymmetrization corrections are unimportant also for the
translationally invariant wave functions considered here, just as in the fixed-center case.

2Note that in the laboratory frame the relative momentum p in Section II.B is given by p =

pL −
1
AqL

3There is also the effect of nonorthogonality between the scattering states Ψ(A)p and the initial
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V. DISCUSSION

The observed magnitude of the experimental cross sections of (e, e′p) reactions at small
missing energies is not satisfactorily explained by present theoretical models. For 16O we
pointed out that c.m. correlations enhance the cross section leading to p-shell quasi-hole
states by about 7%. As a result theoretical predictions [3–5] that consider effects primarily
due to short-range and tensor NN correlations give Sp3/2

≈ 0.97 for 15N. Including also
low-energy configuration mixing in the target and residual nucleus [6] provides additional
depletion and fragmentation of strength and lowers this to Sp3/2

≈ 0.81, which is still far
above the experimental value Sp3/2

(6.32) = 0.53 ± 0.05. At present this discrepancy does
not seem to be understood.

More generally, the large difference between the experimental value of the p-shell quasi-
hole strength and the present variational result indicates that an important ingredient is
missing in the variational wave function. This is also signaled by recent calculations for
A ≤ 7 nuclei [18], in which it is found that the quality of the VMC wave function (used as
input in subsequent Green’s function Monte Carlo calculations) deteriorates with increasing
A, when compared to the final GFMC result. The possibility of α-cluster components in
the surface part of the wave function should be looked at.
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APPENDIX A: HARMONIC OSCILLATOR MODEL FOR THREE PARTICLES

IN A S2P CONFIGURATION

Consider one spin-down and two spin-up neutrons in a harmonic oscillator well. This is
the simplest non-trivial illustration of the h.o. model. The ground-state configuration has a
spin-up and a spin-down neutron in the s-shell and one spin-up neutron in the p-shell. Its
intrinsic wave function is

Ψ(3)(r1, r2, r3; spins) = exp[−
b2

2

3∑
j=1

(rj −R3)
2] {(z1 − Z3)(|uud〉 − |udu〉)

+(z2 − Z3)(|duu〉 − |uud〉) + (z3 − Z3)(|udu〉 − |duu〉)} , (A1)

state Ψ(A)i, which is straightforward to include in this analysis. The correction term to the ampli-

tude has a momentum dependence exp[− b2

2 ( A
A−1p

2 + A−1
2A q2)] and is of the same order of magnitude

as the other correction terms.
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where the spin states are differentiated by u, d, the occupied p-orbital is chosen in the z-
direction, and the h.o. length parameter is b.

The three possible one-hole states are

Ψ
(u)
(2)p(r1, r2, spins) = exp[−

b2

2

2∑
j=1

(rj −R2)
2](|ud〉 − |du〉),

Ψ
(u)
(2)s(r1, r2, spins) = exp[−

b2

2

2∑
j=1

(rj −R2)
2]((z1 − Z2)|ud〉 − (z2 − Z2)|du〉),

Ψ
(d)
(2)s(r1, r2, spins) = exp[−

b2

2

2∑
j=1

(rj −R2)
2](z1 − z2)|uu〉. (A2)

In the notation of Eq.(22-23) we have n(d)
s = n(u)

s = n(u)
p = 1, A(u) = 2 and A(d) = 1.

The spectroscopic factors for the valence p(u) and s(d) hole states are, according to Eq.(22),
S(u)
p = 3

2
and S(d)

s = (3
2
)0 = 1. The spectroscopic factor for the s(u) hole state can be found

from the sum rule (23), S(u)
s = 2− 3

2
= 1

2
.

The same results are easily found by applying Eqs.(4-5) with the intrinsic wave functions
(A1-A2). The normalizations of the wave functions are

〈Ψ(3)|Ψ(3)〉 =
π335/2

b8
, (A3)

〈Ψ(u)
(2)p|Ψ

(u)
(2)p〉 =

π3/225/2

b3
, (A4)

〈Ψ(u)
(2)s|Ψ

(u)
(2)s〉 =

π3/221/2

b5
, (A5)

〈Ψ(d)
(2)s|Ψ

(d)
(2)s〉 =

π3/223/2

b5
. (A6)

The overlap functions are then given by

ψ(u)
p (r3) =

b5/225/4

π3/433/4
z3exp[−

b2

3
r2
3], (A7)

ψ(u)
s (r3) =

b3/221/4

π3/433/4
exp[−

b2

3
r2
3], (A8)

ψ(d)
s (r3) =

b3/223/4

π3/433/4
exp[−

b2

3
r2
3], (A9)

and their normalization agrees with the values for the spectroscopic factors mentioned above.
The spectroscopic sum rule (23) in terms of the intrinsic one-hole states is a consequence

of the special nature of a harmonic oscillator mean-field; in contrast to fixed-center systems
it does not hold for general mean-field s.p. wave functions. As an example we can distort
the h.o. mean field by taking different h.o. length parameters b and b′ for the s and p orbitals
in the present s2p model. The result for S(d)

s now becomes

S(d)
s =

3(x2 + 14x+ 9)−7/2[(x− 1)2(x+ 3)2 + 16(x+ 1)(x2 + 14x+ 9)]

(x+ 1)[(2(2x+ 1))−5/2 + 16(2(x+ 1)(x+ 5))−5/2]
, (A10)
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with x = ( b
′

b
)2. For x = 1 we recover the result S(d)

s = 1, i.e. in a pure h.o. mean field
the spectroscopic strength of the spin-down neutron is fully contained in the intrinsic s(d)

one-hole state. For x 6= 1 we find S(d)
s < 1; the remainder of the strength is contained in

more complicated configurations.
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