71 research outputs found
Mule Regulates the Intestinal Stem Cell Niche via the Wnt Pathway and Targets EphB3 for Proteasomal and Lysosomal Degradation
The E3 ubiquitin ligase Mule is often overexpressed in human colorectal cancers, but its role in gut tumorigenesis is unknown. Here, we show in vivo that Mule controls murine intestinal stem and progenitor cell proliferation by modulating Wnt signaling via c-Myc. Mule also regulates protein levels of the receptor tyrosine kinase EphB3 by targeting it for proteasomal and lysosomal degradation. In the intestine, EphB/ephrinB interactions position cells along the crypt-villus axis and compartmentalize incipient colorectal tumors. Our study thus unveils an important new avenue by which Mule acts as an intestinal tumor suppressor by regulation of the intestinal stem cell niche
Xist localization and function: new insights from multiple levels
In female m ammals, one of the two X chromosomes in each cell is transcriptionally silenced in order to achieve dosage compensation between the genders in a process called X chromosome inactivation. The master regulator of this process is the long non-coding RNA Xist. During X-inactivation, Xist accumulates in cis on the future inactive X chromosome, triggering a cascade of events that provoke the stable silencing of the entire chromosome, with relatively few genes remaining active. How Xist spreads, what are its binding sites, how it recruits silencing factors and how it induces a specific topological and nuclear organization of the chromatin all remain largely unanswered questions. Recent studies have improved our understanding of Xist localization and the proteins with which it interacts, allowing a reappraisal of ideas about Xist function. We discuss recent advances in our knowledge of Xist-mediated silencing, focusing on Xist spreading, the nuclear organization of the inactive X chromosome, recruitment of the polycomb complex and the role of the nuclear matrix in the process of X chromosome inactivation
Combined heterozygous loss of Ebf1 and Pax5 allows for T-lineage conversion of B cell progenitors
The transcription factor Gli3 promotes B cell development in fetal liver through repression of Shh
Before birth, B cells develop in the fetal liver (FL). In this study, we show that Gli3 activity in the FL stroma is required for B cell development. In the Gli3-deficient FL, B cell development was reduced at multiple stages, whereas the Sonic hedgehog (Hh [Shh])–deficient FL showed increased B cell development, and Gli3 functioned to repress Shh transcription. Use of a transgenic Hh-reporter mouse showed that Shh signals directly to developing B cells and that Hh pathway activation was increased in developing B cells from Gli3-deficient FLs. RNA sequencing confirmed that Hh-mediated transcription is increased in B-lineage cells from Gli3-deficient FL and showed that these cells expressed reduced levels of B-lineage transcription factors and B cell receptor (BCR)/pre-BCR–signaling genes. Expression of the master regulators of B cell development Ebf1 and Pax5 was reduced in developing B cells from Gli3-deficient FL but increased in Shh-deficient FL, and in vitro Shh treatment or neutralization reduced or increased their expression, respectively
Assessment of foot health and animal welfare: clinical findings in 229 dairy Mediterranean Buffaloes (Bubalus bubalis) affected by foot disorders.
BACKGROUND
Lameness represents the third most important health-related cause of economic loss in the dairy industry after fertility and mastitis. Although, dairy Mediterranean Buffaloes (MB) and dairy cows share similar breeding systems predisposing to similar herd problems, published studies exploring its relevance and role in these ruminants are still rare and incomplete. The aims of this study were to describe the clinical findings of foot disorders (FDs) in dairy MB and their influence on animal welfare, determined by assessment of locomotion score (LS), body condition score (BCS) and cleanliness score (CS).
RESULTS
Of 1297 multiparous MB submitted to routine trimming procedures, 229 buffaloes showed at least one FD. The prevalence of buffaloes affected by FDs was 17.7 %, while motility and lameness indexes were 84.1 % (1091/1297) and 15.9 % (206/1297), respectively. Overgrowth was present in 17.0 % (220/1297), corkscrew claw in 15.8 % (205/1297), interdigital phlegmon in 0.9 % (12/1297), white line abscess in 0.8 % (11/1297), digital dermatitis in 0.1 % (1/1297) and interdigital hyperplasia in 0.1 % (1/1297). Simultaneous presence of FDs was recorded in 17.0 % of MB (221/1297): overgrowth and corkscrew claw occurred together in 15.8 % of cases (205/1297), overgrowth and interdigital phlegmon in 0.3 % (4/1297), overgrowth and white line abscess in 0.8 % (11/1297), digital dermatitis and interdigital hyperplasia in 0.1 % (1/1297). The presence of FDs was always associated with lameness (LS > 2), except from 23 MB with simultaneous overgrowth and interdigital phlegmon occurrence. The majority of MB within the under-conditioned group (95.5 %, 43/45) and all those with CS > 2 (122/122) had a locomotion score above the threshold of normality (LS > 2). Furthermore, foot diseases such as interdigital hyperplasia, white line abscess and digital dermatitis or interdigital hyperplasia seemed to occur more frequently associated with decreased BCS and increased CS scores.
CONCLUSIONS
This study describes for the first time the involvement of white line disease, interdigital phlegmona, digital dermatitis and interdigital hyperplasia in foot disorders of dairy Mediterranean buffalo and shows their association with an impairment of animal welfare
Unravelling higher order chromatin organisation through statistical analysis
Recent technological advances underpinned by high throughput sequencing have
given new insights into the three-dimensional structure of mammalian genomes.
Chromatin conformation assays have been the critical development in this area,
particularly the Hi-C method which ascertains genome-wide patterns of intra and
inter-chromosomal contacts. However many open questions remain concerning the
functional relevance of such higher order structure, the extent to which it varies, and
how it relates to other features of the genomic and epigenomic landscape.
Current knowledge of nuclear architecture describes a hierarchical organisation
ranging from small loops between individual loci, to megabase-sized self-interacting
topological domains (TADs), encompassed within large multimegabase chromosome
compartments. In parallel with the discovery of these strata, the ENCODE project has
generated vast amounts of data through ChIP-seq, RNA-seq and other assays applied
to a wide variety of cell types, forming a comprehensive bioinformatics resource.
In this work we combine Hi-C datasets describing physical genomic contacts with
a large and diverse array of chromatin features derived at a much finer scale in the
same mammalian cell types. These features include levels of bound transcription
factors, histone modifications and expression data. These data are then integrated
in a statistically rigorous way, through a predictive modelling framework from the
machine learning field. These studies were extended, within a collaborative project, to
encompass a dataset of matched Hi-C and expression data collected over a murine
neural differentiation timecourse.
We compare higher order chromatin organisation across a variety of human cell
types and find pervasive conservation of chromatin organisation at multiple scales.
We also identify structurally variable regions between cell types, that are rich in active
enhancers and contain loci of known cell-type specific function. We show that broad
aspects of higher order chromatin organisation, such as nuclear compartment domains,
can be accurately predicted in a variety of human cell types, using models based upon
underlying chromatin features. We dissect these quantitative models and find them
to be generalisable to novel cell types, presumably reflecting fundamental biological
rules linking compartments with key activating and repressive signals. These models
describe the strong interconnectedness between locus-level patterns of local histone
modifications and bound factors, on the order of hundreds or thousands of basepairs,
with much broader compartmentalisation of large, multi-megabase chromosomal
regions.
Finally, boundary regions are investigated in terms of chromatin features and
co-localisation with other known nuclear structures, such as association with the
nuclear lamina. We find boundary complexity to vary between cell types and link
TAD aggregations to previously described lamina-associated domains, as well as
exploring the concept of meta-boundaries that span multiple levels of organisation.
Together these analyses lend quantitative evidence to a model of higher order genome
organisation that is largely stable between cell types, but can selectively vary locally,
based on the activation or repression of key loci
Assessment of foot health and animal welfare: clinical findings in 229 dairy Mediterranean Buffaloes (Bubalus bubalis) affected by foot disorders
Use of Extended Characteristics of Locomotion and Feeding Behavior for Automated Identification of Lame Dairy Cows.
This study was carried out to detect differences in locomotion and feeding behavior in lame (group L; n = 41; gait score ≥ 2.5) and non-lame (group C; n = 12; gait score ≤ 2) multiparous Holstein cows in a cross-sectional study design. A model for automatic lameness detection was created, using data from accelerometers attached to the hind limbs and noseband sensors attached to the head. Each cow's gait was videotaped and scored on a 5-point scale before and after a period of 3 consecutive days of behavioral data recording. The mean value of 3 independent experienced observers was taken as a definite gait score and considered to be the gold standard. For statistical analysis, data from the noseband sensor and one of two accelerometers per cow (randomly selected) of 2 out of 3 randomly selected days was used. For comparison between group L and group C, the T-test, the Aspin-Welch Test and the Wilcoxon Test were used. The sensitivity and specificity for lameness detection was determined with logistic regression and ROC-analysis. Group L compared to group C had significantly lower eating and ruminating time, fewer eating chews, ruminating chews and ruminating boluses, longer lying time and lying bout duration, lower standing time, fewer standing and walking bouts, fewer, slower and shorter strides and a lower walking speed. The model considering the number of standing bouts and walking speed was the best predictor of cows being lame with a sensitivity of 90.2% and specificity of 91.7%. Sensitivity and specificity of the lameness detection model were considered to be very high, even without the use of halter data. It was concluded that under the conditions of the study farm, accelerometer data were suitable for accurately distinguishing between lame and non-lame dairy cows, even in cases of slight lameness with a gait score of 2.5
Die Rolle von EBF (Early B cell factor) in der Entwicklung von Lymphozyten und lymphoiden Organen
- …
